Deep learning for prediction of isocitrate dehydrogenase mutation in gliomas: a critical approach, systematic review and meta-analysis of the diagnostic test performance using a Bayesian approach
- PMID: 35919062
- PMCID: PMC9338374
- DOI: 10.21037/qims-22-34
Deep learning for prediction of isocitrate dehydrogenase mutation in gliomas: a critical approach, systematic review and meta-analysis of the diagnostic test performance using a Bayesian approach
Abstract
Background: Conventionally, identifying isocitrate dehydrogenase (IDH) mutation in gliomas is based on histopathological analysis of tissue specimens acquired via stereotactic biopsy or definitive resection. Accurate pre-treatment prediction of IDH mutation status using magnetic resonance imaging (MRI) can guide clinical decision-making. We aim to evaluate the diagnostic performance of deep learning (DL) to determine IDH mutation status in gliomas.
Methods: A systematic search of Cochrane Library, Web of Science, Medline, and Scopus was conducted to identify relevant publications until August 1, 2021. Articles were included if all the following criteria were met: (I) patients with histopathologically confirmed World Health Organization (WHO) grade II, III, or IV gliomas; (II) histopathological examination with the IDH mutation; (III) DL was used to predict the IDH mutation status; (IV) sufficient data for reconstruction of confusion matrices in terms of the diagnostic performance of the DL algorithms; and (V) original research articles. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM) was used to assess the studies' quality. Bayes theorem was utilized to calculate the posttest probability.
Results: Four studies with a total of 1,295 patients were included. In the training set, the pooled sensitivity, specificity, and area under the summary receiver operating characteristic (SROC) curve were 93.9%, 90.9% and 0.958, respectively. In the validation set, the pooled sensitivity, specificity, and area under the SROC curve were 90.8%, 85.5% and 0.939, respectively. With a known pretest probability of 80.2%, the Bayes theorem yielded a posttest probability of 97.6% and 96.0% for a positive test and 27.0% and 30.6% for a negative test for training sets and validation sets, respectively.
Discussion: This is the first meta-analysis that summarizes the diagnostic performance of DL in predicting IDH mutation status in gliomas via the Bayes theorem. DL algorithms demonstrate excellent diagnostic performance in predicting IDH mutation in gliomas. Radiomic features associated with IDH mutation, and its underlying pathophysiology extracted from advanced MRI may improve prediction probability. However, more studies are required to optimize and increase its reliability. Limitations include obtaining some data via email and lack of training and test sets statistics.
Keywords: Deep learning (DL); gliomas; isocitrate dehydrogenase (IDH); magnetic resonance imaging (MRI); radiomics.
2022 Quantitative Imaging in Medicine and Surgery. All rights reserved.
Conflict of interest statement
Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://qims.amegroups.com/article/view/10.21037/qims-22-34/coif). The authors have no conflicts of interest to declare.
Figures
References
-
- Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765-73. 10.1056/NEJMoa0808710 - DOI - PMC - PubMed
-
- Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, Westphal M, Schackert G, Meyermann R, Pietsch T, Reifenberger G, Weller M, Loeffler M, von Deimling A. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 2010;120:707-18. 10.1007/s00401-010-0781-z - DOI - PubMed
-
- Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, Paris S, Boisselier B, Idbaih A, Laigle-Donadey F, Hoang-Xuan K, Sanson M, Delattre JY. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 2010;75:1560-6. 10.1212/WNL.0b013e3181f96282 - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous