Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 13;13(27):8180-8186.
doi: 10.1039/d2sc01827f. eCollection 2022 Jul 13.

Electrochemical synthesis of N, N'-disubstituted indazolin-3-ones via an intramolecular anodic dehydrogenative N-N coupling reaction

Affiliations

Electrochemical synthesis of N, N'-disubstituted indazolin-3-ones via an intramolecular anodic dehydrogenative N-N coupling reaction

Jessica C Bieniek et al. Chem Sci. .

Abstract

The use of electricity as a traceless oxidant enables a sustainable and novel approach to N,N'-disubstituted indazolin-3-ones by an intramolecular anodic dehydrogenative N-N coupling reaction. This method is characterized by mild reaction conditions, an easy experimental setup, excellent scalability, and a high atom economy. It was used to synthesize various indazolin-3-one derivatives in yields up to 78%, applying inexpensive and sustainable electrode materials and a low supporting electrolyte concentration. Mechanistic studies, based on cyclic voltammetry experiments, revealed a biradical pathway. Furthermore, the access to single 2-aryl substituted indazolin-3-ones by cleavage of the protecting group could be demonstrated.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Biologically active substances bearing an indazolin-3-one motif.
Scheme 2
Scheme 2. Photochemical and electrochemical approaches to indazolin-3-ones (Ar = aryl; s.m. = starting material; s.e. = supporting electrolyte).
Fig. 1
Fig. 1. Modelled yield plots, predicted using the response optimizer based on DoE optimization experiments. Undivided 5 mL Teflon™ screening cells, CGr electrodes, and NBu4PF6 in HFIP. Screened parameters: starting material concentration c(5a), NBu4PF6 concentration c(NBu4PF6), temperature T, stirring velocity vstirr, current density j, applied molar charge Qmol. (a) Central composite design based on a 26–2 fractional factorial design. (b) Modelled 1H NMR yield with 1,3,5-trimethoxybenzene as the internal standard. (c) Predicted values leading to the maximal yield of 6a. (d) Central composite design based on a 23 full factorial design.
Scheme 3
Scheme 3. Reaction scope. Undivided 5 mL Teflon™ screening cell, substrate (0.3 mmol), HFIP (5 mL). (a) Scale-up experiment in a 60 mL beaker-type glass cell, substrate (3.0 mmol), HFIP (50 mL). (b) Qmol = 3.3 F. (c) Qmol = 4.5 F. (d) j = 2.5 mA cm−2, Qmol = 4.0 F. (e) Qmol = 3.5 F. (f) Qmol = 3.1 F. (g) Qmol = 3.5 F. (h) Qmol = 6.0 F. (i) Cathode: platinum wire.
Scheme 4
Scheme 4. Proposed mechanism for the electrochemical synthesis of indazolin-3-ones based on CV studies and scope. Blue pathway: indazolin-3-one formation via biradical N–N bond linkage. Red pathway: benzoxazole formation as a side reaction through the previously reported cationic mechanism. Deprotonation steps occur via solvent molecules, releasing the protons at the cathode, resulting in hydrogen formation as the counter reaction.
Scheme 5
Scheme 5. Deprotection of 6a yielding single substituted indazolin-3-one 8. Reaction conditions: NaOH, EtOH, 80 °C, 3 h.

Similar articles

Cited by

References

    1. Vitaku E. Smith D. T. Njardarson J. T. J. Med. Chem. 2014;57:10257. doi: 10.1021/jm501100b. - DOI - PubMed
    1. Fletcher S. R. McIver E. Lewis S. Burkamp F. Leech C. Mason G. Boyce S. Morrison D. Richards G. Sutton K. Jones A. B. Bioorg. Med. Chem. Lett. 2006;16:2872. doi: 10.1016/j.bmcl.2006.03.004. - DOI - PubMed
    1. Tse E. Butner L. Huang Y. Hall I. H. Arch. Pharm. Pharm. Med. Chem. 1996;329:35. doi: 10.1002/ardp.19963290107. - DOI - PubMed
    2. Abouzid K. A. M. El-Abhar H. S. Arch. Pharmacal Res. 2003;26:1. doi: 10.1002/ardp.19963290107. - DOI - PubMed
    3. Bruneau P. Delvare C. Edwards M. P. McMillan R. M. J. Med. Chem. 1991;34:1028. doi: 10.1002/ardp.19963290107. - DOI - PubMed
    4. Roth A. Ott S. Farber K. M. Palazzo T. A. Conrad W. E. Haddadin M. J. Tantillo D. J. Cross C. E. Eiserich J. P. Kurth M. J. Bioorg. Med. Chem. 2014;22:6422. doi: 10.1002/ardp.19963290107. - DOI - PMC - PubMed
    5. Yu W. Guo Z. Orth P. Madison V. Chen L. Dai C. Feltz R. J. Girijavallabhan V. M. Kim S. H. Kozlowski J. A. Lavey B. J. Li D. Lundell D. Niu X. Piwinski J. J. Popovici-Muller J. Rizvi R. Rosner K. E. Shankar B. B. Shih N.-Y. Siddiqui M. A. Sun J. Tong L. Umland S. Wong M. K. C. Yang D. Zhou G. Bioorg. Med. Chem. Lett. 2010;20:1877. doi: 10.1002/ardp.19963290107. - DOI - PubMed
    1. Qian Y. Bolin D. Conde-Knape K. Gillespie P. Hayden S. Huang K.-S. Olivier A. R. Sato T. Xiang Q. Yun W. Zhang X. Bioorg. Med. Chem. Lett. 2013;23:2936. doi: 10.1016/j.bmcl.2013.03.049. - DOI - PubMed
    1. Kawanishi N. Sugimoto T. Shibata J. Nakamura K. Masutani K. Ikuta M. Hirai H. Bioorg. Med. Chem. Lett. 2006;16:5122. doi: 10.1016/j.bmcl.2006.07.026. - DOI - PubMed
    2. Wang H. Han H. von Hoff D. D. Cancer Res. 2006;66:9722. doi: 10.1016/j.bmcl.2006.07.026. - DOI - PubMed