Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 11;13(27):8080-8087.
doi: 10.1039/d2sc00046f. eCollection 2022 Jul 13.

An umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition of aryl aldehydes and nitriles: a facile access to 2,4,5-trisubstituted oxazoles

Affiliations

An umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition of aryl aldehydes and nitriles: a facile access to 2,4,5-trisubstituted oxazoles

Deevi Basavaiah et al. Chem Sci. .

Abstract

We have described the first example of an umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition between two aryl aldehydes and a nitrile under the influence of TMSOTf that proceeds through the formation of N-C, O-C and C-C bonds providing a simple synthetic protocol for obtaining 2,4,5-trisubstituted oxazoles.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1. Strategies for oxazoles via [2 + 2 + 1] cycloadditions.
Scheme 2
Scheme 2. Our hypothesis: competing cycloaddition reactions.
Scheme 3
Scheme 3. Synthesis of oxazoles (3): substrate scopea,b. aReaction conditions: all reactions were carried out with carboxaldehyde (1) (1 mmol), nitrile (2) (2 mmol), and TMSOTf (1.5 mmol) in n-PrOAc (2 mL) under reflux (oil bath temperature 120 °C) for 2–8 h. bIsolated yields (based on carboxaldehyde). cRemaining starting materials recovered. dThis reaction was performed with quinoline-2-carboxaldehyde.
Scheme 4
Scheme 4. 13C NMR carbonyl chemical shifts of 1a, 1e, pyridine-4-carboxaldehyde and benzaldehyde and their TMSOTf salts/complex.
Scheme 5
Scheme 5. Synthesis of mixed oxazoles (5): substrate scopea,b. aReaction conditions: all reactions were carried out with carboxaldehyde (1) (1 mmol), aryl aldehyde (4) (2 mmol), nitrile (2) (3 mmol), and TMSOTf (1.5 mmol) in n-PrOAc (2 mL) under reflux (oil bath temperature 120 °C) for 2–6 h. Other oxazoles (3) were not isolated as they were obtained in minor amounts (less than 10%). bIsolated yields [based on carboxaldehyde (1)]. cOther possible oxazoles (3) were not observed in these reactions.
Scheme 6
Scheme 6. Scope of aliphatic nitrilesa,b. aReaction conditions: all reactions were carried out with carboxaldehyde 1 (1 mmol). bIsolated yields (based on 1). cAcetonitrile was also used as a solvent (2 mL) under reflux (oil bath temperature 120 °C) for 24 h. dn-Propyl acetate was used as a solvent for the reaction of 1a with acetonitrile (4 mmol).
Scheme 7
Scheme 7. Scale up experiments. Reaction conditions are the same as Scheme 3 and 5, respectively.
Scheme 8
Scheme 8. HRMS mechanistic studies: observed intermediates. [obsd = observed, calcd = calculated].
Scheme 9
Scheme 9. Plausible mechanistic pathways for the formation of oxazoles 3 and 5.

Similar articles

References

    1. Wöhler F. Liebig J. Ann. Pharm. 1832;3:249–282. doi: 10.1002/jlac.18320030302. - DOI
    2. Zinin N. Ann. Pharm. 1839;31:329–332. doi: 10.1002/jlac.18390310312. - DOI
    3. Zinin N. Ann. Pharm. 1840;34:186–192. doi: 10.1002/jlac.18400340205. - DOI
    1. Corey E. J. Seebach D. Angew. Chem., Int. Ed. 1965;4:1075–1077. doi: 10.1002/anie.196510752. - DOI
    2. Seebach D. Corey E. J. J. Org. Chem. 1975;40:231–237. doi: 10.1021/jo00890a018. - DOI
    1. Breslow R. J. Am. Chem. Soc. 1958;80:3719–3726. doi: 10.1021/ja01547a064. - DOI
    2. Enders D. Niemeier O. Henseler A. Chem. Rev. 2007;107:5606–5655. doi: 10.1021/cr068372z. - DOI - PubMed
    3. Hopkinson M. N. Richter C. Schedler M. Glorius F. Nature. 2014;510:485–496. doi: 10.1038/nature13384. - DOI - PubMed
    4. Flanigan D. M. Romanov-Michailidis F. White N. A. Rovis T. Chem. Rev. 2015;115:9307–9387. doi: 10.1021/acs.chemrev.5b00060. - DOI - PMC - PubMed
    5. Menon R. S. Biju A. T. Nair V. Beilstein J. Org. Chem. 2016;12:444–461. doi: 10.3762/bjoc.12.47. - DOI - PMC - PubMed
    1. Grobel B.-T. Seebach D. Synthesis. 1977:357–402. doi: 10.1055/s-1977-24412. - DOI
    2. Seebach D. Angew. Chem., Int. Ed. 1979;18:239–258. doi: 10.1002/anie.197902393. - DOI
    3. Yus M. Najera C. Foubelo F. Tetrahedron. 2003;59:6147–6212. doi: 10.1016/S0040-4020(03)00955-4. - DOI
    4. Izquierdo J. Hutson G. E. Cohen D. T. Scheidt K. A. Angew. Chem., Int. Ed. 2012;51:11686–11698. doi: 10.1002/anie.201203704. - DOI - PMC - PubMed
    5. Dai X.-J. Li C.-C. Li C.-J. Chem. Soc. Rev. 2021;50:10733–10742. doi: 10.1039/D1CS00418B. - DOI - PubMed
    1. For reviews, see:

    2. Blanco-Urgoiti J. Añorbe L. Pérez-Serrano L. Domínguez G. Pérez-Castells J. Chem. Soc. Rev. 2004;33:32–42. doi: 10.1039/B300976A. - DOI - PubMed
    3. Bonaga L. V. R. Krafft M. E. Tetrahedron. 2004;60:9795–9833. doi: 10.1016/j.tet.2004.06.072. - DOI
    4. Gibson S. E. Mainolfi N. Angew. Chem., Int. Ed. 2005;44:3022–3037. doi: 10.1002/anie.200462235. - DOI - PubMed
    5. Chatani N. Chem. Rec. 2008;8:201–212. doi: 10.1002/tcr.20149. - DOI - PubMed
    6. Kitagaki S. Inagaki F. Mukai C. Chem. Soc. Rev. 2014;43:2956–2978. doi: 10.1039/C3CS60382B. - DOI - PubMed