Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug;16(4):703-713.
doi: 10.1109/TBCAS.2022.3196059. Epub 2022 Oct 12.

A 746 nW ECG Processor ASIC Based on Ternary Neural Network

A 746 nW ECG Processor ASIC Based on Ternary Neural Network

Syed Muhammad Abubakar et al. IEEE Trans Biomed Circuits Syst. 2022 Aug.

Abstract

This paper presents an ultra-low power electrocardiography (ECG) processor application-specific integrated circuit (ASIC) for the real-time detection of abnormal cardiac rhythms (ACRs). The proposed ECG processor can support wearable or implantable ECG devices for long-term health monitoring. It adopts a derivative-based patient adaptive threshold approach to detect the R peaks in the PQRST complex of ECG signals. Two tiny machine learning classifiers are used for the accurate classification of ACRs. A 3-layer feed-forward ternary neural network (TNN) is designed, which classifies the QRS complex's shape, followed by the adaptive decision logics (DL). The proposed processor requires only 1 KB on-chip memory to store the parameters and ECG data required by the classifiers. The ECG processor has been implemented based on fully-customized near-threshold logic cells using thick-gate transistors in 65-nm CMOS technology. The ASIC core occupies a die area of 1.08 mm2. The measured total power consumption is 746 nW, with 0.8 V power supply at 2.5 kHz real-time operating clock. It can detect 13 abnormal cardiac rhythms with a sensitivity and specificity of 99.10% and 99.5%. The number of detectable ACR types far exceeds the other low power designs in the literature.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources