GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation
- PMID: 35924321
- PMCID: PMC9350469
- DOI: 10.14814/phy2.15415
GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation
Abstract
Left ventricular diastolic dysfunction is a structural and functional condition that precedes the development of heart failure with preserved ejection fraction (HFpEF). The etiology of diastolic dysfunction includes alterations in fuel substrate metabolism that negatively impact cardiac bioenergetics, and may precipitate the eventual transition to heart failure. To date, the molecular mechanisms that regulate early changes in fuel metabolism leading to diastolic dysfunction remain unclear. In this report, we use a diet-induced obesity model in aged mice to show that inhibitory lysine acetylation of the pyruvate dehydrogenase (PDH) complex promotes energetic deficits that may contribute to the development of diastolic dysfunction in mouse hearts. Cardiomyocyte-specific deletion of the mitochondrial lysine acetylation regulatory protein GCN5L1 prevented hyperacetylation of the PDH complex subunit PDHA1, allowing aged obese mice to continue using pyruvate as a bioenergetic substrate in the heart. Our findings suggest that changes in mitochondrial protein lysine acetylation represent a key metabolic component of diastolic dysfunction that precedes the development of heart failure.
Keywords: acetylation; diastolic dysfunction; heart failure; mitochondria; pyruvate dehydrogenase.
© 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
Figures





Similar articles
-
Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H265-H274. doi: 10.1152/ajpheart.00752.2016. Epub 2017 May 19. Am J Physiol Heart Circ Physiol. 2017. PMID: 28526709 Free PMC article.
-
Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet.Sci Rep. 2020 Jun 30;10(1):10665. doi: 10.1038/s41598-020-67812-x. Sci Rep. 2020. PMID: 32606301 Free PMC article.
-
Cardiomyocyte-specific deletion of GCN5L1 reduces lysine acetylation and attenuates diastolic dysfunction in aged mice by improving cardiac fatty acid oxidation.Biochem J. 2024 Mar 20;481(6):423-436. doi: 10.1042/BCJ20230421. Biochem J. 2024. PMID: 38390938
-
Mitochondrial Bioenergetics and Dysfunction in Failing Heart.Adv Exp Med Biol. 2017;982:65-80. doi: 10.1007/978-3-319-55330-6_4. Adv Exp Med Biol. 2017. PMID: 28551782 Review.
-
Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.Biochim Biophys Acta. 2016 Dec;1862(12):2211-2220. doi: 10.1016/j.bbadis.2016.07.020. Epub 2016 Jul 29. Biochim Biophys Acta. 2016. PMID: 27479696 Review.
Cited by
-
Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.J Cardiovasc Transl Res. 2025 Apr;18(2):442-456. doi: 10.1007/s12265-025-10591-5. Epub 2025 Jan 25. J Cardiovasc Transl Res. 2025. PMID: 39863753 Review.
-
GCN5L1 inhibits pyruvate dehydrogenase phosphorylation during cardiac ischemia-reperfusion injury.bioRxiv [Preprint]. 2025 May 19:2024.06.03.597148. doi: 10.1101/2024.06.03.597148. bioRxiv. 2025. PMID: 40475660 Free PMC article. Preprint.
-
Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling.Cell Biosci. 2023 Aug 15;13(1):151. doi: 10.1186/s13578-023-01098-0. Cell Biosci. 2023. PMID: 37580825 Free PMC article.
-
Validation of GCN5L1/BLOC1S1/BLOS1 antibodies using knockout cells and tissue.Biochem J. 2024 May 22;481(10):643-651. doi: 10.1042/BCJ20230302. Biochem J. 2024. PMID: 38683688 Free PMC article.
-
BLOC1S1 variants cause lysosomal and autophagic defects resulting in a hypomyelinating leukodystrophy with epileptic encephalopathy.medRxiv [Preprint]. 2025 Jul 17:2025.07.17.25331211. doi: 10.1101/2025.07.17.25331211. medRxiv. 2025. PMID: 40791729 Free PMC article. Preprint.
References
-
- Alrob, O. A. , Sankaralingam, S. , Ma, C. , Wagg, C. S. , Fillmore, N. , Jaswal, J. S. , Sack, M. N. , Lehner, R. , Gupta, M. P. , Michelakis, E. D. , Padwal, R. S. , Johnstone, D. E. , Sharma, A. M. , & Lopaschuk, G. D. (2014). Obesity‐induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovascular Research, 103(4), 485–497. - PMC - PubMed
-
- Davidson, M. T. , Grimsrud, P. A. , Lai, L. , Draper, J. A. , Fisher‐Wellman, K. H. , Narowski, T. M. , Abraham, D. M. , Koves, T. R. , Kelly, D. P. , & Muoio, D. M. (2020). Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circulation Research, 127(8), 1094–1108. - PMC - PubMed
-
- Deng, Y. , Xie, M. , Li, Q. , Xu, X. , Ou, W. , Zhang, Y. , Xiao, H. , Yu, H. , Zheng, Y. , Liang, Y. , Jiang, C. , Chen, G. , Du, D. , Zheng, W. , Wang, S. , Gong, M. , Chen, Y. , Tian, R. , & Li, T. (2021). Targeting mitochondria‐inflammation circuit by β‐hydroxybutyrate mitigates HFpEF. Circulation Research, 128(2), 232–245. - PubMed
-
- Fukushima, A. , Alrob, O. A. , Zhang, L. , Wagg, C. S. , Altamimi, T. , Rawat, S. , Rebeyka, I. M. , Kantor, P. F. , & Lopaschuk, G. D. (2016). Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. American Journal of Physiology Heart and Circulatory Physiology, 311(2), H347–H363. - PubMed
-
- Gopal, K. , Al Batran, R. , Altamimi, T. R. , Greenwell, A. A. , Saed, C. T. , Tabatabaei Dakhili, S. A. , Dimaano, M. T. E. , Zhang, Y. , Eaton, F. , Sutendra, G. , & Ussher, J. R. (2021). FoxO1 inhibition alleviates type 2 diabetes‐related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Reports, 35(1), 108935. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases