GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation
- PMID: 35924321
- PMCID: PMC9350469
- DOI: 10.14814/phy2.15415
GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation
Abstract
Left ventricular diastolic dysfunction is a structural and functional condition that precedes the development of heart failure with preserved ejection fraction (HFpEF). The etiology of diastolic dysfunction includes alterations in fuel substrate metabolism that negatively impact cardiac bioenergetics, and may precipitate the eventual transition to heart failure. To date, the molecular mechanisms that regulate early changes in fuel metabolism leading to diastolic dysfunction remain unclear. In this report, we use a diet-induced obesity model in aged mice to show that inhibitory lysine acetylation of the pyruvate dehydrogenase (PDH) complex promotes energetic deficits that may contribute to the development of diastolic dysfunction in mouse hearts. Cardiomyocyte-specific deletion of the mitochondrial lysine acetylation regulatory protein GCN5L1 prevented hyperacetylation of the PDH complex subunit PDHA1, allowing aged obese mice to continue using pyruvate as a bioenergetic substrate in the heart. Our findings suggest that changes in mitochondrial protein lysine acetylation represent a key metabolic component of diastolic dysfunction that precedes the development of heart failure.
Keywords: acetylation; diastolic dysfunction; heart failure; mitochondria; pyruvate dehydrogenase.
© 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
Figures
References
-
- Alrob, O. A. , Sankaralingam, S. , Ma, C. , Wagg, C. S. , Fillmore, N. , Jaswal, J. S. , Sack, M. N. , Lehner, R. , Gupta, M. P. , Michelakis, E. D. , Padwal, R. S. , Johnstone, D. E. , Sharma, A. M. , & Lopaschuk, G. D. (2014). Obesity‐induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovascular Research, 103(4), 485–497. - PMC - PubMed
-
- Davidson, M. T. , Grimsrud, P. A. , Lai, L. , Draper, J. A. , Fisher‐Wellman, K. H. , Narowski, T. M. , Abraham, D. M. , Koves, T. R. , Kelly, D. P. , & Muoio, D. M. (2020). Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circulation Research, 127(8), 1094–1108. - PMC - PubMed
-
- Deng, Y. , Xie, M. , Li, Q. , Xu, X. , Ou, W. , Zhang, Y. , Xiao, H. , Yu, H. , Zheng, Y. , Liang, Y. , Jiang, C. , Chen, G. , Du, D. , Zheng, W. , Wang, S. , Gong, M. , Chen, Y. , Tian, R. , & Li, T. (2021). Targeting mitochondria‐inflammation circuit by β‐hydroxybutyrate mitigates HFpEF. Circulation Research, 128(2), 232–245. - PubMed
-
- Fukushima, A. , Alrob, O. A. , Zhang, L. , Wagg, C. S. , Altamimi, T. , Rawat, S. , Rebeyka, I. M. , Kantor, P. F. , & Lopaschuk, G. D. (2016). Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. American Journal of Physiology Heart and Circulatory Physiology, 311(2), H347–H363. - PubMed
-
- Gopal, K. , Al Batran, R. , Altamimi, T. R. , Greenwell, A. A. , Saed, C. T. , Tabatabaei Dakhili, S. A. , Dimaano, M. T. E. , Zhang, Y. , Eaton, F. , Sutendra, G. , & Ussher, J. R. (2021). FoxO1 inhibition alleviates type 2 diabetes‐related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Reports, 35(1), 108935. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
