The long noncoding RNA HOXA11-AS promotes lung adenocarcinoma proliferation and glycolysis via the microRNA-148b-3p/PKM2 axis
- PMID: 35924724
- PMCID: PMC9972162
- DOI: 10.1002/cam4.5103
The long noncoding RNA HOXA11-AS promotes lung adenocarcinoma proliferation and glycolysis via the microRNA-148b-3p/PKM2 axis
Abstract
Background: Lung cancer is the most common malignancy in the world and a growing number of researches have focused on its metabolic characteristics. Studies have shown that the long non-coding RNA (lncRNA) HOXA11-AS is aberrantly expressed in many tumors. However, the role of HOXA11-AS in lung adenocarcinoma (LUAD) glycolysis and other energy metabolism pathways has not been characterized.
Method: The mRNA levels of HOXA11-AS, microRNA-148b-3p (miR-148b-3p), and pyruvate kinase M2 (PKM2) were detected using qRT-PCR. The expression levels of proteins were measured using immunohistochemistry and western blot. The CCK-8, EdU, and colony formation assays were used to assess proliferation. Glycolytic changes were assessed by measuring lactate production, ATP production, and 18 F-FDG uptake. Bioinformatics analysis and dual-luciferase reporter assays were used to characterize the relationship between HOXA11-AS, miR-148b-3p, and PKM2. Proliferation and glycolytic changes were analyzed in xenograft tumor experiments using Micro-PET imaging after downregulation of HOXA11-AS in vivo.
Results: The expression of HOXA11-AS was markedly increased in LUAD, and was strongly associated with a poor prognosis. In addition, HOXA11-AS promoted proliferation and glycolysis in LUAD, and miR-148b-3p inhibited proliferation and glycolysis in LUAD. Mechanistically, HOXA11-AS positively regulated PKM2 expression by binding to miR-148b-3p, thereby promoting LUAD proliferation and glycolysis. In addition, HOXA11-AS inhibited LUAD xenograft growth and glycolysis via upregulation of miR-148b-3p expression and downregulation of PKM2 expression in vivo.
Conclusions: These results showed that HOXA11-AS enhanced LUAD proliferation and glycolysis via the miR-148b-3p/PKM2 axis. The findings in this paper expanded our understanding of the molecular mechanisms of LUAD tumorigenesis and glycolysis and showed that HOXA11-AS could be useful as a diagnostic and prognostic marker for LUAD. 18 F-FDG PET/CT can be used to visually evaluate the therapeutic effect of targeting HOXA11-AS.
Keywords: HOXA11-AS; aerobic glycolysis; lung adenocarcinoma; microRNA-148b-3p; pyruvate kinase M2.
© 2022 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Conflict of interest statement
None.
Figures







References
-
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394‐424. - PubMed
-
- Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363‐385. - PubMed
-
- Bender E. Epidemiology: the dominant malignancy. Nature. 2014;513(7517):S2‐S3. - PubMed
-
- Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243‐1260. - PubMed
-
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7‐30. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous