Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2023 Feb;37(1):337-344.
doi: 10.1007/s10877-022-00897-z. Epub 2022 Aug 4.

Prediction of acute postoperative pain based on intraoperative nociception level (NOL) index values: the impact of machine learning-based analysis

Affiliations
Randomized Controlled Trial

Prediction of acute postoperative pain based on intraoperative nociception level (NOL) index values: the impact of machine learning-based analysis

Louis Morisson et al. J Clin Monit Comput. 2023 Feb.

Abstract

The relationship between intraoperative nociception and acute postoperative pain is still not well established. The nociception level (NOL) Index (Medasense, Ramat Gan, Israel) uses a multiparametric approach to provide a 0-100 nociception score. The objective of the ancillary analysis of the NOLGYN study was to evaluate the ability of a machine-learning aglorithm to predict moderate to severe acute postoperative pain based on intraoperative NOL values. Our study uses the data from the NOLGYN study, a randomized controlled trial that evaluated the impact of NOL-guided intraoperative administration of fentanyl on overall fentanyl consumption compared to standard of care. Seventy patients (ASA class I-III, aged 18-75 years) scheduled for gynecological laparoscopic surgery were enrolled. Variables included baseline demographics, NOL reaction to incision or intubation, median NOL during surgery, NOL time-weighted average (TWA) above or under manufacturers' recommended thresholds (10-25), and percentage of surgical time spent with NOL > 25 or < 10. We evaluated different machine learning algorithms to predict postoperative pain. Performance was assessed using cross-validated area under the ROC curve (CV-AUC). Of the 66 patients analyzed, 42 (63.6%) experienced moderate to severe pain. NOL post-intubation (42.8 (31.8-50.6) vs. 34.8 (25.6-41.3), p = 0.05), median NOL during surgery (13 (11-15) vs. 11 (8-13), p = 0.027), percentage of surgical time spent with NOL > 25 (23% (18-18) vs. 20% (15-24), p = 0.036), NOL TWA < 10 (2.54 (2.1-3.0) vs. 2.86 (2.48-3.62), p = 0.044) and percentage of surgical time spent with NOL < 10 (41% (36-47) vs. 47% (40-55), p = 0.022) were associated with moderate to severe PACU pain. Corresponding ROC AUC for the prediction of moderate to severe PACU pain were 0.65 [0.51-0.79], 0.66 [0.52-0.81], 0.66 [0.52-0.79], 0.65 [0.51-0.79] and 0.67 [0.53-0.81]. Penalized logistic regression achieved the best performance with a 0.753 (0.718-0.788) CV-AUC. Our results, even if limited by the small number of patients, suggest that acute postoperative pain is better predicted by a multivariate machine-learning algorithm rather than individual intraoperative nociception variables. Further larger multicentric trials are highly recommended to better understand the relationship between intraoperative nociception and acute postoperative pain.Trial registration Registered on ClinicalTrials.gov in October 2018 (NCT03776838).

Keywords: Acute postoperative pain; Machine learning; Nociception level index; Nociception monitoring; Prediction.

PubMed Disclaimer

References

    1. Apfelbaum JL, Chen C, Mehta SS, Gan TJ. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesthesia Analgesia. 2003;97(2):534–40. https://doi.org/10.1213/01.Ane.0000068822.10113.9e . - DOI
    1. Gerbershagen HJ, Aduckathil S, van Wijck AJM, Peelen LM, Kalkman CJ, Meissner W. Pain intensity on the first day after surgery: a prospective cohort study comparing 179 surgical procedures. Anesthesiology. 2013;118(4):934–44. https://doi.org/10.1097/ALN.0b013e31828866b3 . - DOI
    1. Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. J Pain Res. 2017;10:2287–98. https://doi.org/10.2147/JPR.S144066 . - DOI
    1. Neuman MD, Bateman BT, Wunsch H. Inappropriate opioid prescription after surgery. Lancet (London, England). 2019;393(10180):1547–57. https://doi.org/10.1016/S0140-6736(19)30428-3 . - DOI
    1. Perkins Frederick M, Kehlet H. Chronic pain as an outcome of surgery: a review of predictive factors. Anesthesiology. 2000;93(4):1123–33. https://doi.org/10.1097/00000542-200010000-00038 . - DOI

Publication types

Associated data

LinkOut - more resources