Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics
- PMID: 35925610
- DOI: 10.1002/adma.202201864
Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics
Erratum in
-
Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics.Adv Mater. 2023 Mar;35(12):e2300758. doi: 10.1002/adma.202300758. Adv Mater. 2023. PMID: 36950964 No abstract available.
Abstract
Requirements and recent advances in research on organic neuroelectronics are outlined herein. Neuroelectronics such as neural interfaces and neuroprosthetics provide a promising approach to diagnose and treat neurological diseases. However, the current neural interfaces are rigid and not biocompatible, so they induce an immune response and deterioration of neural signal transmission. Organic materials are promising candidates for neural interfaces, due to their mechanical softness, excellent electrochemical properties, and biocompatibility. Also, organic nervetronics, which mimics functional properties of the biological nerve system, is being developed to overcome the limitations of the complex and energy-consuming conventional neuroprosthetics that limit long-term implantation and daily-life usage. Examples of organic materials for neural interfaces and neural signal recordings are reviewed, recent advances of organic nervetronics that use organic artificial synapses are highlighted, and then further requirements for neuroprosthetics are discussed. Finally, the future challenges that must be overcome to achieve ideal organic neuroelectronics for next-generation neuroprosthetics are discussed.
Keywords: artificial nerves; artificial neurons; artificial synapses; bioelectronics; nervetronics; neuromorphic electronics.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.Acc Chem Res. 2019 Apr 16;52(4):964-974. doi: 10.1021/acs.accounts.8b00553. Epub 2019 Mar 21. Acc Chem Res. 2019. PMID: 30896916 Review.
-
Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.Adv Mater. 2020 Apr;32(15):e1903558. doi: 10.1002/adma.201903558. Epub 2019 Sep 26. Adv Mater. 2020. PMID: 31559670 Review.
-
Increasing the stability of electrolyte-gated organic synaptic transistors for neuromorphic implants.Biosens Bioelectron. 2024 Oct 1;261:116444. doi: 10.1016/j.bios.2024.116444. Epub 2024 May 28. Biosens Bioelectron. 2024. PMID: 38850740 Review.
-
Organic Artificial Nerves: Neuromorphic Robotics and Bioelectronics.Chem Rev. 2025 Mar 12;125(5):2625-2664. doi: 10.1021/acs.chemrev.4c00571. Epub 2025 Feb 21. Chem Rev. 2025. PMID: 39983019 Review.
-
Artificial Neuron and Synapse Devices Based on 2D Materials.Small. 2021 May;17(20):e2100640. doi: 10.1002/smll.202100640. Epub 2021 Apr 4. Small. 2021. PMID: 33817985 Review.
Cited by
-
Recent advancements in implantable neural links based on organic synaptic transistors.Exploration (Beijing). 2023 Nov 7;4(2):20220150. doi: 10.1002/EXP.20220150. eCollection 2024 Apr. Exploration (Beijing). 2023. PMID: 38855618 Free PMC article. Review.
-
Modulating Neuromorphic Behavior of Organic Synaptic Electrolyte-Gated Transistors Through Microstructure Engineering and Potential Applications.ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41211-41222. doi: 10.1021/acsami.4c05966. Epub 2024 Jul 25. ACS Appl Mater Interfaces. 2024. PMID: 39054697 Free PMC article.
-
Aerosol Jet Printing for Neuroprosthetic Device Development.Bioengineering (Basel). 2025 Jun 28;12(7):707. doi: 10.3390/bioengineering12070707. Bioengineering (Basel). 2025. PMID: 40722399 Free PMC article. Review.
-
Technology Roadmap for Flexible Sensors.ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9. ACS Nano. 2023. PMID: 36892156 Free PMC article. Review.
-
Quantum Topological Neuristors for Advanced Neuromorphic Intelligent Systems.Adv Sci (Weinh). 2023 Aug;10(24):e2300791. doi: 10.1002/advs.202300791. Epub 2023 Jun 21. Adv Sci (Weinh). 2023. PMID: 37340871 Free PMC article.
References
-
- GBD 2016 Neurology Collaborators, Lancet Neurol. 2019, 18, 459.
-
- O. T. Hall, R. P. McGrath, M. D. Peterson, E. H. Chadd, M. J. DeVivo, A. W. Heinemann, C. Z. Kalpakjian, Arch. Phys. Med. Rehabil. 2019, 100, 95.
-
- M. Simonato, J. Bennett, N. M. Boulis, M. G. Castro, D. J. Fink, W. F. Goins, S. J. Gray, P. R. Lowenstein, L. H. Vandenberghe, T. J. Wilson, J. H. Wolfe, J. C. Glorioso, Nat. Rev. Neurol. 2013, 9, 277.
-
- D. B. Rubin, H. H. Danish, A. B. Ali, K. Li, S. Larose, A. D. Monk, D. J. Cote, L. Spendley, A. H. Kim, M. S. Robertson, M. Torre, T. R. Smith, S. Izzy, C. A. Jacobson, J. W. Lee, H. Vaitkevicius, Brain 2019, 142, 1334.
-
- C. Hinderer, N. Katz, E. L. Buza, C. Dyer, T. Goode, P. Bell, L. K. Richman, J. M. Wilson, Hum. Gene Ther. 2018, 29, 285.
Publication types
MeSH terms
Grants and funding
- National Research Foundation of Korea
- NRF-2016R1A3B1908431/Korea government
- Creative-Pioneering Researchers Program through Seoul National University
- Interdisciplinary Research Initiative Program by College of Engineering and College of Medicine
- 2022/Seoul National University
- National R&D Program through the National Research Foundation of Korea
- 2021M3F3A2A01037858/Ministry of Science and ICT
- Basic Science Research Program through the National Research Foundation of Korea
- NRF 2021R1A6A3A03038934/Ministry of Education
- Pioneer Research Center Program through the National Research Foundation of Korea
- 2022M3C1A3081211/Ministry of Science and ICT
LinkOut - more resources
Full Text Sources