Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 19;24(32):6093-6098.
doi: 10.1021/acs.orglett.2c02481. Epub 2022 Aug 4.

Synthesis of Vicinal Carbocycles by Intramolecular Nickel-Catalyzed Conjunctive Cross-Electrophile Coupling Reaction

Affiliations

Synthesis of Vicinal Carbocycles by Intramolecular Nickel-Catalyzed Conjunctive Cross-Electrophile Coupling Reaction

Kirsten A Hewitt et al. Org Lett. .

Abstract

A nickel-catalyzed intramolecular conjunctive cross-electrophile coupling reaction has been established. This method enables the synthesis of 3,5-vicinal carbocyclic rings found in numerous biologically active compounds and natural products. We provide mechanistic experiments that indicate this reaction proceeds through alkyl iodides formed in situ, initiates at the secondary electrophilic center, and proceeds through radical intermediates.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Previous Work in Conjunctive XEC Reactions and Medicinally Relevant Vicinal Carbocycles
Scheme 2
Scheme 2. Conjunctive XEC Reaction Scope
Reaction performed on 0.1 mmol scale unless otherwise noted. Reaction performed on 0.5 mmol scale. Yield in parentheses is 1H NMR yield compared to PhTMS as an internal standard.
Scheme 3
Scheme 3. Control Reaction with Single Alkene Diastereomer
Scheme 4
Scheme 4. Competition Experiments and Proposed Reaction Mechanism (R1 = 4-MeO-C6H4, R2 = 4-BnO-C6H4)

Similar articles

Cited by

References

    1. Reviews of nickel catalysis:

    2. Modern Organonickel Chemistry; Tamaru Y., Ed.; Wiley-VCH: Weinheim, 2005.
    3. Tasker S. Z.; Standley E. A.; Jamison T. F. Recent Advances in Homogenous Nickel Catalysis. Nature 2014, 509, 299–309. 10.1038/nature13274. - DOI - PMC - PubMed
    4. Nickel Catalysis in Organic Synthesis: Methods and Reactions; Ogoshi S., Ed.; Wiley: 2020.
    1. Reviews of conjunctive XC and XEC reactions:

    2. Derosa J.; Tran V. T.; van der Puyl V. A.; Engle K. M. Carbon–Carbon Bond π-Bonds as Conjunctive Reagents in Cross-Coupling. Aldrichimica Acta 2018, 51, 21–32.
    3. Zhang J.-S.; Liu L.; Chen T.; Han L.-B. Transition-Metal-Catalyzed Three-Component Difunctionalization of Alkenes. Chem.—Asian J. 2018, 13, 2277–2291. 10.1002/asia.201800647. - DOI - PubMed
    4. Qi X.; Diao T. Nickel-Catalyzed Dicarbofunctionalization of Alkenes. ACS Catal. 2020, 10, 8542–8556. 10.1021/acscatal.0c02115. - DOI - PMC - PubMed
    5. Derosa J.; Apolinar O.; Kang T.; Tran V. T.; Engle K. M. Recent Deveopments in Nickel-Catalyzed Intermolecular Dicarbofunctionalization of Alkenes. Chem. Sci. 2020, 11, 4287–4296. 10.1039/C9SC06006E. - DOI - PMC - PubMed
    6. Badir S. O.; Molander G. A. Developments in Photoredox/Nickel Dual Catalyzed 1,2-Dicarbofunctionalizations. Chem. 2020, 6, 1327–1339. 10.1016/j.chempr.2020.05.013. - DOI - PMC - PubMed
    7. Tu H.-Y.; Zhu S.; Qing F.-L.; Chu L. Recent Advances in Nickel-Catalyzed Three Component Difunctionalization of Unactivated Alkenes. Synthesis 2020, 52, 1346–1356. 10.1055/s-0039-1690842. - DOI
    8. Ping Y.; Kong W. Ni-Catalyzed Reductive Difunctionalization of Alkenes. Synthesis 2020, 52, 979–992. 10.1055/s-0039-1690807. - DOI
    9. Wickham L. M.; Giri R. Transition Metal (Ni, Cu, Pd)-Catalyzed Alkene Dicarbofunctionalization Reactions. Acc. Chem. Res. 2021, 54, 3415–3437. 10.1021/acs.accounts.1c00329. - DOI - PMC - PubMed
    10. Zhu S.; Zhao X.; Li H.; Chu L. Catalytic Three-Component Dicarbofuncationalization Reaction Involving Radical Capture by Nickel. Chem. Soc. Rev. 2021, 50, 10836–10856. 10.1039/D1CS00399B. - DOI - PubMed
    11. Gao P.; Niu Y.-J.; Yang F.; Guo L. N.; Duan X.-H. Three-Component 1,2-Dicarbofunctionalization of Alkenes Involving Alkyl Radicals. Chem. Commun. 2022, 58, 730–746. 10.1039/D1CC05730H. - DOI - PubMed
    1. Reviews of XEC reactions:

    2. Knappke C. E. I.; Grupe S.; Gärtner D.; Corpet M.; Gosmini C.; Jacobi von Wangelin A. Reductive Cross-Coupling Reactions between Two Electrophiles. Chem.—Eur. J. 2014, 20, 6828–6842. 10.1002/chem.201402302. - DOI - PubMed
    3. Everson D. A.; Weix D. J. Cross-Electrophile Coupling: Principles of Reactivity and Selectivity. J. Org. Chem. 2014, 79, 4793–4798. 10.1021/jo500507s. - DOI - PMC - PubMed
    4. Gu J.; Wang X.; Xue W.; Gong H. Nickel-Catalyzed Reductive Coupling of Alkyl Halides with Other Electrophiles: Concept and Mechanistic Considerations. Org. Chem. Front. 2015, 2, 1411–1421. 10.1039/C5QO00224A. - DOI
    5. Goldfogel M.; Huang L.; Weix D. J.. Cross-Electrophile Coupling. In Nickel Catalysis in Organic Synthesis; Ogoshi S., Ed.; Wiley, 2020; 183–222.
    6. Richmond E.; Moran J. Recent Advances in Nickel Catalysis Enabled by Stoichiometric Metallic Reducing Agents. Synthesis 2018, 50, 499–513. 10.1055/s-0036-1591853. - DOI
    7. Campeau L.-C.; Hazari N. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics 2019, 38, 3–35. 10.1021/acs.organomet.8b00720. - DOI - PMC - PubMed
    8. Hewitt K. A.; Lin P. C.; Raffman E. T. A.; Jarvo E. R.. C–C Bond Formation Through Cross-Electrophile Coupling Reaction. Comprehensive Organometallic Chemistry IV; Elsevier: 2021.
    1. Discussion of conjunctive XEC reaction mechanisms:

    2. Lin Q.; Diao T. Mechanism of Ni-Catalyzed Reductive 1,2-Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2019, 141, 17937–17948. 10.1021/jacs.9b10026. - DOI - PMC - PubMed
    3. Diccianni J.; Lin Q.; Diao T. Mechanism of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization. Acc. Chem. Res. 2020, 53, 906–919. 10.1021/acs.accounts.0c00032. - DOI - PMC - PubMed
    1. Representative examples of conjunctive XEC reactions using activated alkenes:

    2. García-Domínguez A.; Li Z.; Nevado C. Nickel-Catalyzed Reductive Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2017, 139, 6835–6838. 10.1021/jacs.7b03195. - DOI - PubMed
    3. Wang L.; Wang C. Nickel-Catalyzed Three-Component Reductive Alkylacylation of Electron Deficient Activated Alkenes. Org. Lett. 2020, 22, 8829–8835. 10.1021/acs.orglett.0c03210. - DOI - PubMed
    4. Zhao Q.-W.; Yang Z.-F.; Fu X.-P.; Zhang X. Access to α,α-Diflouro-γ-Amino Acids by Nickel-Catalyzed Reductive Aryldifluoroacetylation of N-Vinylacetamide. Synlett 2021, 32, 1565–1569. 10.1055/s-0040-1706553. - DOI
    5. Wang X.-X.; Lu X.; He S.-J.; Fu Y. Nickel-Catalyzed Three-Component Olefin Reductive Dicarbofunctionalization to Access Alkylborates. Chem. Sci. 2020, 11, 7950–7956. 10.1039/D0SC02054K. - DOI - PMC - PubMed
    6. Feng X.; Guo L.; Zhu S.; Chu L. Borates as a Traceless Activation Group for Intermolecular Alkylarylation of Ethylene through Photoredox/Nickel Dual Catalysis. Synlett 2021, 32, 1519–1524. 10.1055/a-1320-6946. - DOI

Publication types