Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 17;144(32):14452-14457.
doi: 10.1021/jacs.2c05248. Epub 2022 Aug 4.

Photochemical Alkene Hydrophosphination with Bis(trichlorosilyl)phosphine

Affiliations

Photochemical Alkene Hydrophosphination with Bis(trichlorosilyl)phosphine

Michael B Geeson et al. J Am Chem Soc. .

Abstract

Bis(trichlorosilyl)phosphine (HP(SiCl3)2, 1) was prepared from [TBA][P(SiCl3)2] ([TBA]2, TBA = tetra-n-butylammonium) and triflic acid in 36% yield. Phosphine 1 is an efficient reagent for hydrophosphination of unactivated terminal olefins under UV irradiation (15-60 min) and gives rise to bis(trichlorosilyl)alkylphosphines (RP(SiCl3)2, R = (CH2)5CH3, 88%; (CH2)7CH3, 98%; (CH2)2C(CH3)3, 76%; CH2Cy, 93%; (CH2)2Cy, 95%; CH2CH(CH3)(CH2)2CH3, 82%; (CH2)3O(CH2)3CH3, 95%; (CH2)3Cl, 83%; (CH2)2SiMe3, 92%; (CH2)5C(H)CH2, 44%) in excellent yields. The products require no further purification beyond filtration and removal of volatile material under reduced pressure. The P-Si bonds of prototypical products RP(SiCl3)2 (R = -(CH2)5CH3, -(CH2)7CH3) are readily functionalized to give further phosphorus-containing products: H3C(CH2)7PCl2 (56%), [H3C(CH2)5P(CH2Ph)3]Br (84%), H3C(CH2)7PH2 (61%), H3C(CH2)5P(O)(H)(OH) (81%), and H3C(CH2)5P(O)(OH)2 (55%). Experimental mechanistic investigations, accompanied by quantum chemical calculations, point toward a radical-chain mechanism. Phosphine 1 enables the fast, high-yielding, and atom-efficient preparation of compounds that contain phosphorus-carbon bonds in procedures that bypass white phosphorus (P4), a toxic and high-energy intermediate of the phosphorus industry.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources