Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep:167:107431.
doi: 10.1016/j.envint.2022.107431. Epub 2022 Jul 28.

Embedding nature-based solutions into the social cost of carbon

Affiliations
Free article

Embedding nature-based solutions into the social cost of carbon

Wenyi Han et al. Environ Int. 2022 Sep.
Free article

Abstract

China, the world's largest CO2 emitter, is making every effort to transition to a low-carbon economy and fulfill its part of a concerted global commitment to combating climate change. In tandem with decarbonizing energy and industries, feasible supplementary measures are urgently needed to help remove anthropogenic CO2 from the atmosphere. A burgeoning literature has emphasized the CO2 removal capability of land re-naturalization (such as afforestation and wetland restoration), thereby regarding cognate land-use conversions as Nature-based Solutions (NbS) and potential climate policy options. However, little empirical evidence exists concerning the effectiveness of different land re-naturalization pathways (such as converting wetlands to forests or agricultural lands to grasslands), and it also remains unclear how NbS alternatives (i.e., land-use conversions resulting in negative CO2 emission) and non-NbS options (i.e., land-use conversions resulting in positive CO2 emission) could affect the social cost of carbon (SCC), a conventional measurement for prescribing carbon mitigation approaches. This study aims to fill in this knowledge gap via embedding NbS into the dynamic integrated climate-economics (DICE) model to quantify their impacts on the SCC. Using the Pearl River Delta region (south China) as a case study for the temporal horizon during 2000-2020, we find that both positive and negative CO2 fluxes have been brought by different natural/semi-natural land conversions, affecting the SCC correspondingly. A total of 7 out of 17 types of land-use conversions could be identified as feasible NbS interventions, including forest restoration, forest-to-wetland, grassland-to-forest, grassland-to-wetland, grassland-to-cropland, cropland-to-forest, and cropland-to-wetland conversions, which could reduce the SCC values (comparing 2020 base-year with 2000 base-year) by 0.0132, 0.0009, 0.0033, 0.0030, 0.0001, 0.0082, and 0.0001 (USD/tCO2), respectively. While the SCC is mainly determined by energy and industrial structure, the overall effect of NbS is larger than the sum of land urbanization and non-NbS land-use conversions. Via embedding the real-world inter-dynamics of land-use conversions into the SCC quantification, this study presents a pioneer assessment of the impacts of NbS on the SCC in an integrated framework, sheds important insights into the effectiveness of NbS, and offers practical implications for policy-makers to devise comprehensive policies covering all feasible CO2 abatement options.

Keywords: China; Climate change mitigation; DICE; Integrated assessment model; Nature-based Solutions; Social cost of carbon.

PubMed Disclaimer

Publication types

LinkOut - more resources