Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 4;14(1):109.
doi: 10.1186/s13098-022-00863-4.

Circulating osteocalcin is associated with time in range and other metrics assessed by continuous glucose monitoring in type 2 diabetes

Affiliations

Circulating osteocalcin is associated with time in range and other metrics assessed by continuous glucose monitoring in type 2 diabetes

Jun Liu et al. Diabetol Metab Syndr. .

Abstract

Background: Osteocalcin, a protein secreted mainly by mature osteoblasts, has been shown to be involved in glucose metabolism through various pathways. However, few studies has explored the association between osteocalcin and Time in range (TIR). Continuous glucose monitoring (CGM) -derived metrics, such as TIR and other indexes have been gradually and widely used in clinical practice to assess glucose fluctuations. The main purpose of this study was to investigate the correlation between osteocalcin and indexes from CGM in patients with type 2 diabetes mellitus (T2DM).

Method: The total number of 376 patients with T2D were enrolled, all of them performed three consecutive days of monitoring. They were divided into four groups on account of the quartile of osteocalcin. Time in range, Time below range (TBR), Time above range(TAR) and measures of glycemic variability (GV) were assessed for analysing. After a 100 g standard steamed bread meal, blood glucose (Glu0h Glu0.5 h, Glu1h, Glu2h, GLu3h), C-peptide (Cp0h, Cp0.5 h, Cp1h, Cp2h, Cp3h), serum insulin (INS0h, INS0.5 h, INS1h, INS2h, INS3h) concentrations at different time points were obtained. HOMA-IS, HOMA-βwas calculated to evaluate insulin sensitivity and insulin secreting of the participants.

Results: Patients with higher osteocalcin level had higher TIR (P < 0.05). Spearman correlation analysis showed that osteocalcin was positively correlated with TBR (although the P value for TBR was greater than 0.05) (r = 0.227, P < 0.001 r = 0.068, P = 0.189) and negatively correlated with TAR (- 0.229, P < 0.001). Similarly, there was a negative correlation between osteocalcin and glycemic variability (GV) indicators, including SD, MBG, MODD, ADDR, and MAGE (P value of MAGE > 0.05). Multiple stepwise regression showed that osteocalcin was an independent contributor to TIR, TAR and HOMA-IS.

Conclusion: Circulating osteocalcin is positively correlated with TIR and negatively correlated with MODD, ADDR, and MAGE. Osteocalcin may have a beneficial impact on glucose homeostasis in T2DM patients.

Keywords: Glycemic control; HOMA-IS; Osteocalcin; Time in range; Type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Fig. 1
Fig. 1
TIR of each group by quartile of osteocalcin levels (G1:osteocalcin < 10.68 ng/ml, G2:10.68 ng/ml≦osteocalcin < 13.72 ng/ml, G3:13.72 ng/ml≦osteocalcin < 17.30 ng/ml, G4:osteocalcin≧17.30 ng/ml). Kruskal–Wallis H test was applied to show statistical significance of comparison between groups (n = 94 per group) *p = 0.001

Similar articles

Cited by

References

    1. Saeedi P, Petersohn I, Salpea P, et al. IDF Diabetes Atlas Committee Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019; 157: 107843. - PubMed
    1. GBD 2013 Mortality and Causes of Death Collaborators Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–171. doi: 10.1016/S0140-6736(14)61682-2. - DOI - PMC - PubMed
    1. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. J Pediatr. 1994;125(2):177–88. - PubMed
    1. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82. doi: 10.1016/S0140-6736(13)60591-7. - DOI - PMC - PubMed
    1. Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes. Diabetes Technol Ther. 2019;21:81–85. doi: 10.1089/dia.2018.0310. - DOI - PubMed

Grants and funding

LinkOut - more resources