Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 5;17(8):e0271508.
doi: 10.1371/journal.pone.0271508. eCollection 2022.

Prediction of drug resistance by Sanger sequencing of Mycobacterium tuberculosis complex strains isolated from multidrug resistant tuberculosis suspect patients in Ethiopia

Affiliations

Prediction of drug resistance by Sanger sequencing of Mycobacterium tuberculosis complex strains isolated from multidrug resistant tuberculosis suspect patients in Ethiopia

Eyob Abera Mesfin et al. PLoS One. .

Abstract

Background: Ethiopia is one of the high multidrug-resistant tuberculosis (MDR-TB) burden countries. However, phenotypic drug susceptibility testing can take several weeks due to the slow growth of Mycobacterium tuberculosis complex (MTBC) strains. In this study, we assessed the performance of a Sanger sequencing approach to predict resistance against five anti-tuberculosis drugs and the pattern of resistance mediating mutations.

Methods: We enrolled 226 MTBC culture-positive MDR-TB suspects and collected sputum specimens and socio-demographic and TB related data from each suspect between June 2015 and December 2016 in Addis Ababa, Ethiopia. Phenotypic drug susceptibility testing (pDST) for rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin using BACTEC MGIT 960 was compared with the results of a Sanger sequencing analysis of seven resistance determining regions in the genes rpoB, katG, fabG-inhA, pncA, embB, rpsL, and rrs.

Result: DNA isolation for Sanger sequencing was successfully extracted from 92.5% (209/226) of the MTBC positive cultures, and the remaining 7.5% (17/226) strains were excluded from the final analysis. Based on pDST results, drug resistance proportions were as follows: isoniazid: 109/209 (52.2%), streptomycin: 93/209 (44.5%), rifampicin: 88/209 (42.1%), ethambutol: 74/209 (35.4%), and pyrazinamide: 69/209 (33.0%). Resistance against isoniazid was mainly mediated by the mutation katG S315T (97/209, 46.4%) and resistance against rifampicin by rpoB S531L (58/209, 27.8%). The dominating resistance-conferring mutations for ethambutol, streptomycin, and pyrazinamide affected codon 306 in embB (48/209, 21.1%), codon 88 in rpsL (43/209, 20.6%), and codon 65 in pncA (19/209, 9.1%), respectively. We observed a high agreement between phenotypic and genotypic DST, such as 89.9% (at 95% confidence interval [CI], 84.2%-95.8%) for isoniazid, 95.5% (95% CI, 91.2%-99.8%) for rifampicin, 98.6% (95% CI, 95.9-100%) for ethambutol, 91.3% (95% CI, 84.6-98.1%) for pyrazinamide and 57.0% (95% CI, 46.9%-67.1%) for streptomycin.

Conclusion: We detected canonical mutations implicated in resistance to rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin. High agreement with phenotypic DST results for all drugs renders Sanger sequencing promising to be performed as a complementary measure to routine phenotypic DST in Ethiopia. Sanger sequencing directly from sputum may accelerate accurate clinical decision-making in the future.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig 1
Fig 1. A flowchart explaining the steps of the study.

Similar articles

Cited by

References

    1. World Health Organization. Global tuberculosis report 2019. World Health Organization; 2019.
    1. Girum T, Muktar E, Lentiro K, Wondiye H, Shewangizaw M. Epidemiology of multidrug-resistant tuberculosis (MDR-TB) in Ethiopia: a systematic review and meta-analysis of the prevalence, determinants and treatment outcome. Tropical diseases, travel medicine and vaccines. 2018. Dec 1;4(1):5. doi: 10.1186/s40794-018-0065-5 - DOI - PMC - PubMed
    1. Abate D, Taye B, Abseno M, Biadgilign S. Epidemiology of anti-tuberculosis drug resistance patterns and trends in tuberculosis referral hospital in Addis Ababa, Ethiopia. BMC research notes. 2012. Dec 1;5(1):462. doi: 10.1186/1756-0500-5-462 - DOI - PMC - PubMed
    1. Abdella K, Abdissa K, Kebede W, Abebe G. Drug resistance patterns of Mycobacterium tuberculosis complex and associated factors among retreatment cases around Jimma, Southwest Ethiopia. BMC public health. 2015. Dec 1;15(1):599. doi: 10.1186/s12889-015-1955-3 - DOI - PMC - PubMed
    1. Tessema B, Beer J, Emmrich F, Sack U, Rodloff AC. First-and second-line anti-tuberculosis drug resistance in Northwest Ethiopia. The International Journal of Tuberculosis and Lung Disease. 2012. Jun 1;16(6):805–11. doi: 10.5588/ijtld.11.0522 - DOI - PubMed

MeSH terms