Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 31;14(4).
doi: 10.1088/1758-5090/ac8767.

Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments

Affiliations
Review

Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments

D Petta et al. Biofabrication. .

Abstract

Over the past years, 3Din vitromodels have been widely employed in the regenerative medicine field. Among them, organ-on-a-chip technology has the potential to elucidate cellular mechanism exploiting multichannel microfluidic devices to establish 3D co-culture systems that offer control over the cellular, physico-chemical and biochemical microenvironments. To deliver the most relevant cues to cells, it is of paramount importance to select the most appropriate matrix for mimicking the extracellular matrix of the native tissue. Natural polymers-based hydrogels are the elected candidates for reproducing tissue-specific microenvironments in musculoskeletal tissue-on-a-chip models owning to their interesting and peculiar physico-chemical, mechanical and biological properties. Despite these advantages, there is still a gap between the biomaterials complexity in conventional tissue engineering and the application of these biomaterials in 3Din vitromicrofluidic models. In this review, the aim is to suggest the adoption of more suitable biomaterials, alternative crosslinking strategies and tissue engineered-inspired approaches in organ-on-a-chip to better mimic the complexity of physiological musculoskeletal tissues. Accordingly, after giving an overview of the musculoskeletal tissue compositions, the properties of the main natural polymers employed in microfluidic systems are investigated, together with the main musculoskeletal tissues-on-a-chip devices.

Keywords: hydrogels; microfluidic models; musculoskeletal tissues; natural biomaterials; support matrix.

PubMed Disclaimer

LinkOut - more resources