Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 4;109(8):1366-1387.
doi: 10.1016/j.ajhg.2022.06.012.

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas  1 Jonathan Judd  2 Sarah E Graham  3 Stavroula Kanoni  4 Yuxuan Wang  5 Ida Surakka  3 Brandon Wenz  1 Shoa L Clarke  6 Alessandra Chesi  7 Andrew Wells  1 Konain Fatima Bhatti  4 Sailaja Vedantam  8 Thomas W Winkler  9 Adam E Locke  10 Eirini Marouli  4 Greg J M Zajac  11 Kuan-Han H Wu  12 Ioanna Ntalla  13 Qin Hui  14 Derek Klarin  15 Austin T Hilliard  16 Zeyuan Wang  14 Chao Xue  3 Gudmar Thorleifsson  17 Anna Helgadottir  17 Daniel F Gudbjartsson  18 Hilma Holm  17 Isleifur Olafsson  19 Mi Yeong Hwang  20 Sohee Han  20 Masato Akiyama  21 Saori Sakaue  22 Chikashi Terao  23 Masahiro Kanai  24 Wei Zhou  25 Ben M Brumpton  26 Humaira Rasheed  27 Aki S Havulinna  28 Yogasudha Veturi  29 Jennifer Allen Pacheco  30 Elisabeth A Rosenthal  31 Todd Lingren  32 QiPing Feng  33 Iftikhar J Kullo  34 Akira Narita  35 Jun Takayama  35 Hilary C Martin  36 Karen A Hunt  37 Bhavi Trivedi  37 Jeffrey Haessler  38 Franco Giulianini  39 Yuki Bradford  29 Jason E Miller  29 Archie Campbell  40 Kuang Lin  41 Iona Y Millwood  42 Asif Rasheed  43 George Hindy  44 Jessica D Faul  45 Wei Zhao  46 David R Weir  45 Constance Turman  47 Hongyan Huang  47 Mariaelisa Graff  48 Ananyo Choudhury  49 Dhriti Sengupta  49 Anubha Mahajan  50 Michael R Brown  51 Weihua Zhang  52 Ketian Yu  11 Ellen M Schmidt  11 Anita Pandit  11 Stefan Gustafsson  53 Xianyong Yin  11 Jian'an Luan  54 Jing-Hua Zhao  55 Fumihiko Matsuda  56 Hye-Mi Jang  20 Kyungheon Yoon  20 Carolina Medina-Gomez  57 Achilleas Pitsillides  5 Jouke Jan Hottenga  58 Andrew R Wood  59 Yingji Ji  59 Zishan Gao  60 Simon Haworth  61 Ruth E Mitchell  62 Jin Fang Chai  63 Mette Aadahl  64 Anne A Bjerregaard  65 Jie Yao  66 Ani Manichaikul  67 Wen-Jane Lee  68 Chao Agnes Hsiung  69 Helen R Warren  70 Julia Ramirez  4 Jette Bork-Jensen  71 Line L Kårhus  65 Anuj Goel  72 Maria Sabater-Lleal  73 Raymond Noordam  74 Pala Mauro  75 Floris Matteo  76 Aaron F McDaid  77 Pedro Marques-Vidal  78 Matthias Wielscher  79 Stella Trompet  80 Naveed Sattar  81 Line T Møllehave  65 Matthias Munz  82 Lingyao Zeng  83 Jianfeng Huang  84 Bin Yang  84 Alaitz Poveda  85 Azra Kurbasic  85 Sebastian Schönherr  86 Lukas Forer  86 Markus Scholz  87 Tessel E Galesloot  88 Jonathan P Bradfield  89 Sanni E Ruotsalainen  90 E Warwick Daw  91 Joseph M Zmuda  92 Jonathan S Mitchell  93 Christian Fuchsberger  93 Henry Christensen  94 Jennifer A Brody  95 Phuong Le  96 Mary F Feitosa  91 Mary K Wojczynski  91 Daiane Hemerich  97 Michael Preuss  97 Massimo Mangino  98 Paraskevi Christofidou  99 Niek Verweij  100 Jan W Benjamins  100 Jorgen Engmann  101 Tsao L Noah  102 Anurag Verma  1 Roderick C Slieker  103 Ken Sin Lo  104 Nuno R Zilhao  105 Marcus E Kleber  106 Graciela E Delgado  107 Shaofeng Huo  108 Daisuke D Ikeda  109 Hiroyuki Iha  109 Jian Yang  110 Jun Liu  111 Ayşe Demirkan  112 Hampton L Leonard  113 Jonathan Marten  114 Carina Emmel  115 Börge Schmidt  115 Laura J Smyth  116 Marisa Cañadas-Garre  117 Chaolong Wang  118 Masahiro Nakatochi  119 Andrew Wong  120 Nina Hutri-Kähönen  121 Xueling Sim  63 Rui Xia  122 Alicia Huerta-Chagoya  123 Juan Carlos Fernandez-Lopez  124 Valeriya Lyssenko  125 Suraj S Nongmaithem  126 Alagu Sankareswaran  127 Marguerite R Irvin  120 Christopher Oldmeadow  128 Han-Na Kim  129 Seungho Ryu  130 Paul R H J Timmers  131 Liubov Arbeeva  132 Rajkumar Dorajoo  133 Leslie A Lange  134 Gauri Prasad  135 Laura Lorés-Motta  136 Marc Pauper  136 Jirong Long  137 Xiaohui Li  66 Elizabeth Theusch  138 Fumihiko Takeuchi  139 Cassandra N Spracklen  140 Anu Loukola  90 Sailalitha Bollepalli  90 Sophie C Warner  141 Ya Xing Wang  142 Wen B Wei  143 Teresa Nutile  144 Daniela Ruggiero  145 Yun Ju Sung  146 Shufeng Chen  84 Fangchao Liu  84 Jingyun Yang  147 Katherine A Kentistou  148 Bernhard Banas  149 Anna Morgan  150 Karina Meidtner  151 Lawrence F Bielak  46 Jennifer A Smith  152 Prashantha Hebbar  153 Aliki-Eleni Farmaki  154 Edith Hofer  155 Maoxuan Lin  156 Maria Pina Concas  150 Simona Vaccargiu  157 Peter J van der Most  158 Niina Pitkänen  159 Brian E Cade  160 Sander W van der Laan  161 Kumaraswamy Naidu Chitrala  162 Stefan Weiss  163 Amy R Bentley  164 Ayo P Doumatey  164 Adebowale A Adeyemo  164 Jong Young Lee  165 Eva R B Petersen  166 Aneta A Nielsen  167 Hyeok Sun Choi  168 Maria Nethander  169 Sandra Freitag-Wolf  170 Lorraine Southam  171 Nigel W Rayner  172 Carol A Wang  173 Shih-Yi Lin  174 Jun-Sing Wang  175 Christian Couture  176 Leo-Pekka Lyytikäinen  177 Kjell Nikus  178 Gabriel Cuellar-Partida  179 Henrik Vestergaard  180 Bertha Hidalgo  181 Olga Giannakopoulou  4 Qiuyin Cai  137 Morgan O Obura  182 Jessica van Setten  183 Karen Y He  184 Hua Tang  2 Natalie Terzikhan  185 Jae Hun Shin  168 Rebecca D Jackson  186 Alexander P Reiner  187 Lisa Warsinger Martin  188 Zhengming Chen  42 Liming Li  189 Takahisa Kawaguchi  56 Joachim Thiery  190 Joshua C Bis  95 Lenore J Launer  191 Huaixing Li  108 Mike A Nalls  113 Olli T Raitakari  192 Sahoko Ichihara  193 Sarah H Wild  194 Christopher P Nelson  141 Harry Campbell  148 Susanne Jäger  151 Toru Nabika  195 Fahd Al-Mulla  153 Harri Niinikoski  196 Peter S Braund  141 Ivana Kolcic  197 Peter Kovacs  198 Tota Giardoglou  199 Tomohiro Katsuya  200 Dominique de Kleijn  201 Gert J de Borst  201 Eung Kweon Kim  202 Hieab H H Adams  203 M Arfan Ikram  185 Xiaofeng Zhu  184 Folkert W Asselbergs  183 Adriaan O Kraaijeveld  183 Joline W J Beulens  204 Xiao-Ou Shu  137 Loukianos S Rallidis  205 Oluf Pedersen  71 Torben Hansen  71 Paul Mitchell  206 Alex W Hewitt  207 Mika Kähönen  208 Louis Pérusse  209 Claude Bouchard  210 Anke Tönjes  198 Yii-Der Ida Chen  66 Craig E Pennell  173 Trevor A Mori  211 Wolfgang Lieb  212 Andre Franke  213 Claes Ohlsson  214 Dan Mellström  215 Yoon Shin Cho  168 Hyejin Lee  216 Jian-Min Yuan  217 Woon-Puay Koh  218 Sang Youl Rhee  219 Jeong-Taek Woo  219 Iris M Heid  9 Klaus J Stark  9 Martina E Zimmermann  9 Henry Völzke  220 Georg Homuth  163 Michele K Evans  191 Alan B Zonderman  191 Ozren Polasek  221 Gerard Pasterkamp  161 Imo E Hoefer  161 Susan Redline  160 Katja Pahkala  222 Albertine J Oldehinkel  223 Harold Snieder  158 Ginevra Biino  224 Reinhold Schmidt  225 Helena Schmidt  226 Stefania Bandinelli  227 George Dedoussis  199 Thangavel Alphonse Thanaraj  153 Patricia A Peyser  46 Norihiro Kato  139 Matthias B Schulze  228 Giorgia Girotto  229 Carsten A Böger  230 Bettina Jung  230 Peter K Joshi  148 David A Bennett  147 Philip L De Jager  231 Xiangfeng Lu  84 Vasiliki Mamakou  232 Morris Brown  233 Mark J Caulfield  70 Patricia B Munroe  70 Xiuqing Guo  66 Marina Ciullo  145 Jost B Jonas  234 Nilesh J Samani  141 Jaakko Kaprio  90 Päivi Pajukanta  235 Teresa Tusié-Luna  236 Carlos A Aguilar-Salinas  237 Linda S Adair  238 Sonny Augustin Bechayda  239 H Janaka de Silva  240 Ananda R Wickremasinghe  241 Ronald M Krauss  242 Jer-Yuarn Wu  243 Wei Zheng  137 Anneke I den Hollander  136 Dwaipayan Bharadwaj  244 Adolfo Correa  245 James G Wilson  246 Lars Lind  247 Chew-Kiat Heng  248 Amanda E Nelson  249 Yvonne M Golightly  250 James F Wilson  131 Brenda Penninx  251 Hyung-Lae Kim  252 John Attia  253 Rodney J Scott  253 D C Rao  146 Donna K Arnett  254 Mark Walker  255 Laura J Scott  11 Heikki A Koistinen  256 Giriraj R Chandak  257 Josep M Mercader  258 Clicerio Gonzalez Villalpando  259 Lorena Orozco  260 Myriam Fornage  261 E Shyong Tai  262 Rob M van Dam  262 Terho Lehtimäki  177 Nish Chaturvedi  263 Mitsuhiro Yokota  264 Jianjun Liu  265 Dermot F Reilly  266 Amy Jayne McKnight  116 Frank Kee  116 Karl-Heinz Jöckel  115 Mark I McCarthy  267 Colin N A Palmer  268 Veronique Vitart  114 Caroline Hayward  114 Eleanor Simonsick  269 Cornelia M van Duijn  111 Zi-Bing Jin  270 Fan Lu  271 Haretsugu Hishigaki  109 Xu Lin  108 Winfried März  272 Vilmundur Gudnason  273 Jean-Claude Tardif  104 Guillaume Lettre  104 Leen M T Hart  274 Petra J M Elders  275 Daniel J Rader  276 Scott M Damrauer  277 Meena Kumari  278 Mika Kivimaki  279 Pim van der Harst  100 Tim D Spector  99 Ruth J F Loos  280 Michael A Province  91 Esteban J Parra  281 Miguel Cruz  282 Bruce M Psaty  283 Ivan Brandslund  284 Peter P Pramstaller  93 Charles N Rotimi  285 Kaare Christensen  286 Samuli Ripatti  287 Elisabeth Widén  90 Hakon Hakonarson  288 Struan F A Grant  289 Lambertus Kiemeney  88 Jacqueline de Graaf  88 Markus Loeffler  87 Florian Kronenberg  86 Dongfeng Gu  290 Jeanette Erdmann  82 Heribert Schunkert  83 Paul W Franks  85 Allan Linneberg  64 J Wouter Jukema  291 Amit V Khera  292 Minna Männikkö  293 Marjo-Riitta Jarvelin  294 Zoltan Kutalik  77 Cucca Francesco  295 Dennis O Mook-Kanamori  296 Ko Willems van Dijk  297 Hugh Watkins  298 David P Strachan  299 Niels Grarup  71 Peter Sever  300 Neil Poulter  301 Wayne Huey-Herng Sheu  302 Jerome I Rotter  66 Thomas M Dantoft  65 Fredrik Karpe  303 Matt J Neville  303 Nicholas J Timpson  62 Ching-Yu Cheng  304 Tien-Yin Wong  304 Chiea Chuen Khor  265 Hengtong Li  305 Charumathi Sabanayagam  304 Annette Peters  306 Christian Gieger  307 Andrew T Hattersley  308 Nancy L Pedersen  309 Patrik K E Magnusson  309 Dorret I Boomsma  310 Eco J C de Geus  310 L Adrienne Cupples  311 Joyce B J van Meurs  312 Arfan Ikram  185 Mohsen Ghanbari  313 Penny Gordon-Larsen  238 Wei Huang  314 Young Jin Kim  20 Yasuharu Tabara  56 Nicholas J Wareham  54 Claudia Langenberg  54 Eleftheria Zeggini  315 Jaakko Tuomilehto  316 Johanna Kuusisto  317 Markku Laakso  317 Erik Ingelsson  318 Goncalo Abecasis  319 John C Chambers  320 Jaspal S Kooner  321 Paul S de Vries  51 Alanna C Morrison  51 Scott Hazelhurst  322 Michèle Ramsay  49 Kari E North  48 Martha Daviglus  323 Peter Kraft  324 Nicholas G Martin  325 John B Whitfield  325 Shahid Abbas  43 Danish Saleheen  326 Robin G Walters  327 Michael V Holmes  328 Corri Black  329 Blair H Smith  268 Aris Baras  330 Anne E Justice  331 Julie E Buring  332 Paul M Ridker  332 Daniel I Chasman  332 Charles Kooperberg  38 Gen Tamiya  35 Masayuki Yamamoto  35 David A van Heel  37 Richard C Trembath  333 Wei-Qi Wei  334 Gail P Jarvik  335 Bahram Namjou  336 M Geoffrey Hayes  337 Marylyn D Ritchie  29 Pekka Jousilahti  338 Veikko Salomaa  338 Kristian Hveem  339 Bjørn Olav Åsvold  340 Michiaki Kubo  341 Yoichiro Kamatani  342 Yukinori Okada  343 Yoshinori Murakami  344 Bong-Jo Kim  345 Unnur Thorsteinsdottir  346 Kari Stefansson  346 Jifeng Zhang  3 Y Eugene Chen  3 Yuk-Lam Ho  347 Julie A Lynch  348 Philip S Tsao  349 Kyong-Mi Chang  350 Kelly Cho  351 Christopher J O'Donnell  351 John M Gaziano  351 Peter Wilson  352 Karen L Mohlke  353 Timothy M Frayling  59 Joel N Hirschhorn  354 Sekar Kathiresan  355 Michael Boehnke  11 Million Veterans ProgramGlobal Lipids Genetics ConsortiumStruan Grant  356 Pradeep Natarajan  357 Yan V Sun  14 Andrew P Morris  358 Panos Deloukas  359 Gina Peloso  5 Themistocles L Assimes  349 Cristen J Willer  360 Xiang Zhu  361 Christopher D Brown  362
Affiliations

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas et al. Am J Hum Genet. .

Abstract

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.

Keywords: complex traits; fine-mapping; functional genomics; lipid biology; post-GWAS; regulatory mechanism; variant prioritization.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests G.C.-P. is currently an employee of 23andMe Inc. M.J.C. is the Chief Scientist for Genomics England, a UK Government company. B.M. Psaty serves on the steering committee of the Yale Open Data Access Project funded by Johnson & Johnson. G. Thorleifsson, A.H., D.F.G., H. Holm, U.T., and K.S. are employees of deCODE/Amgen Inc. V.S. has received honoraria for consultations from Novo Nordisk and Sanofi and has an ongoing research collaboration with Bayer Ltd. M. McCarthy has served on advisory panels for Pfizer, NovoNordisk, and Zoe Global and has received honoraria from Merck, Pfizer, Novo Nordisk, and Eli Lilly and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. M. McCarthy and A. Mahajan are employees of Genentech and holders of Roche stock. M.S. receives funding from Pfizer Inc. for a project unrelated to this work. M.E.K. is employed by SYNLAB MVZ Mannheim GmbH. W.M. has received grants from Siemens Healthineers, grants and personal fees from Aegerion Pharmaceuticals, grants and personal fees from AMGEN, grants from Astrazeneca, grants and personal fees from Sanofi, grants and personal fees from Alexion Pharmaceuticals, grants and personal fees from BASF, grants and personal fees from Abbott Diagnostics, grants and personal fees from Numares AG, grants and personal fees from Berlin-Chemie, grants and personal fees from Akzea Therapeutics, grants from Bayer Vital GmbH , grants from bestbion dx GmbH, grants from Boehringer Ingelheim Pharma GmbH Co KG, grants from Immundiagnostik GmbH, grants from Merck Chemicals GmbH, grants from MSD Sharp and Dohme GmbH, grants from Novartis Pharma GmbH, grants from Olink Proteomics, and other from Synlab Holding Deutschland GmbH, all outside the submitted work. A.V.K. has served as a consultant to Sanofi, Medicines Company, Maze Pharmaceuticals, Navitor Pharmaceuticals, Verve Therapeutics, Amgen, and Color Genomics; received speaking fees from Illumina and the Novartis Institute for Biomedical Research; received sponsored research agreements from the Novartis Institute for Biomedical Research and IBM Research, and reports a patent related to a genetic risk predictor (20190017119). S. Kathiresan is an employee of Verve Therapeutics and holds equity in Verve Therapeutics, Maze Therapeutics, Catabasis, and San Therapeutics. He is a member of the scientific advisory boards for Regeneron Genetics Center and Corvidia Therapeutics; he has served as a consultant for Acceleron, Eli Lilly, Novartis, Merck, Novo Nordisk, Novo Ventures, Ionis, Alnylam, Aegerion, Haug Partners, Noble Insights, Leerink Partners, Bayer Healthcare, Illumina, Color Genomics, MedGenome, Quest, and Medscape; and he reports patents related to a method of identifying and treating a person having a predisposition to or afflicted with cardiometabolic disease (20180010185) and a genetics risk predictor (20190017119). D.K. accepts consulting fees from Regeneron Pharmaceuticals. D.O.M.-K. is a part-time clinical research consultant for Metabolon, Inc. D. Saleheen has received support from the British Heart Foundation, Pfizer, Regeneron, Genentech, and Eli Lilly pharmaceuticals. P.N. reports investigator-initated grants from Amgen, Apple, AstraZeneca, Boston Scientific, and Novartis, personal fees from Apple, AstraZeneca, Blackstone Life Sciences, Foresite Labs, Novartis, Roche / Genentech, is a co-founder of TenSixteen Bio, is a scientific advisory board member of Esperion Therapeutics, geneXwell, and TenSixteen Bio, and spousal employment at Vertex, all unrelated to the present work. The spouse of C.J.W. is employed by Regeneron.

Figures

Figure 1
Figure 1
Schematic overview of the multi-layer functional genomic analysis We integrate GWAS summary statistics for five lipid phenotypes with eQTL and chromatin interaction data to identify potential genes mediating the GWAS loci, and use epigenomic annotations to identify regulatory mechanisms at these loci. For a GWAS locus indexed by a lead variant X, A, B, and C represent nearby eGenes across tissues, and SNPs around SNP X represent variants in the credible set for this locus.
Figure 2
Figure 2
Overlap between eQTL colocalized genes and Capture-C prioritized genes, and their enrichments in known lipid-associated genes (A) Numbers of genes identified by two approaches: eQTL colocalization (Coloc) and promoter Capture-C interaction (CapC). Capture-C interactions restricted to genes expressed in the tissue of interest (or in the union of adipose and liver for “all tissues”) are shaded. (B) Overlap between two list of prioritized genes (left: Capture-C prioritized genes; right: eQTL colocalized genes) with four external sets of genes previously associated with lipid biology (MGI knockout genes, ClinVar lipidemia-associated genes, genes implicated in rare burden of lipids, and genes from a lipid TWAS). Dashed lines represent enrichments using only genes expressed in the liver. (C) Enrichment in overlap between eQTL colocalized genes and Capture-C prioritized genes against what is expected by chance, assuming both gene sets are independent. Dashed lines represent genes expressed in the tissue of interest (or in the union of adipose or liver for “all”). Enrichment estimates and 95% confidence intervals shown in (B) and (C) are based on the Fisher exact test. (D) Fraction of colocalized loci that point to a single candidate gene when using eQTL data alone or using both eQTL and Capture-C data.
Figure 3
Figure 3
Tissue relevance of lipid-associated loci Partitioning heritability of lipid GWAS summary statistics on gene expression (A) and active chromatin marks (B) across tissues. Each plotted point represents a tested dataset for enrichment of heritability, with larger dots representing datasets with enrichment p value < 0.05. Each color represents a tissue group (Table S7), and the y-axis represents −log10 p value for enrichment of heritability.
Figure 4
Figure 4
TF enrichment identified by GREGOR and S-LDSC (A) Number of TFs enriched in the GREGOR analysis on GWAS loci for each of the five lipid traits. (B) Number of TFs enriched in S-LDSC analysis on each of the five lipid traits. (C) TF RXRA binds to the promoters of 26 colocalized genes (18 protein-coding). Colors represent the subsets of lipid phenotypes with colocalization. Larger node sizes represent smaller GWAS p values of colocalized loci.
Figure 5
Figure 5
Multi-layer functional integration to prioritize variants at GWAS loci (A) Variant annotation and prioritization scheme at each GWAS credible set. (B) Evidence for RRBP1 from functional genomics data. The LDL GWAS locus at this region (first row) is an eQTL for RRBP1 in the liver (second row). Variants in the credible set of this locus interact with the gene promoter in both adipose and HepG2 Capture-C data (third row). The interacting variant is also in an open chromatin peak in three liver-related cell types (fourth row). (C) Multiple sources of functional genomics data support CREBRF as a gene contributing to HDL levels. The HDL GWAS locus at this region (first row) is an eQTL for CREBRF in adipose (second row). Variants in the credible set at this locus interact with the CREBRF promoter in adipose (third row). The interacting variant is also in open chromatin in liver-related cell types (fourth row).

References

    1. Gallagher M.D., Chen-Plotkin A.S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 2018;102:717–730. doi: 10.1016/j.ajhg.2018.04.002. - DOI - PMC - PubMed
    1. Cano-Gamez E., Trynka G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 2020;11:424. doi: 10.3389/fgene.2020.00424. - DOI - PMC - PubMed
    1. Schaid D.J., Chen W., Larson N.B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 2018;19:491–504. doi: 10.1038/s41576-018-0016-z. - DOI - PMC - PubMed
    1. Smemo S., Tena J.J., Kim K.-H., Gamazon E.R., Sakabe N.J., Gómez-Marín C., Aneas I., Credidio F.L., Sobreira D.R., Wasserman N.F., et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371–375. doi: 10.1038/nature13138. - DOI - PMC - PubMed
    1. Musunuru K., Strong A., Frank-Kamenetsky M., Lee N.E., Ahfeldt T., Sachs K.V., Li X., Li H., Kuperwasser N., Ruda V.M., et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–719. doi: 10.1038/nature09266. - DOI - PMC - PubMed

Publication types

Grants and funding