Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 15;435(1):167771.
doi: 10.1016/j.jmb.2022.167771. Epub 2022 Aug 2.

The effects of serum albumin pre-adsorption of nanoparticles on protein corona and membrane interaction: A molecular simulation study

Affiliations

The effects of serum albumin pre-adsorption of nanoparticles on protein corona and membrane interaction: A molecular simulation study

Lingxiao Li et al. J Mol Biol. .

Abstract

As a platform to deliver imaging and therapeutic agents to targeted sites in vivo, nanoparticles (NPs) have widespread applications in diagnosis and treatment of cancer. However, the poor in vivo delivery efficiency of nanoparticles limits its potential for further application. Once enter the physiological environment, nanoparticles immediately interact with proteins and form protein corona, which changes the physicochemical properties of nanoparticle surface and further affects their transport. In this study, we performed molecular dynamics simulations to study the adsorption mechanism of nanoparticles with various surface modifications and different proteins (e.g., human serum albumin, complement protein C3b), and their interactions with cell membrane. The results show that protein human serum albumin prefers to interact with hydrophobic and positively charged nanoparticles, while the protein C3b prefers the hydrophobic and charged nanoparticles. The pre-adsorption of human serum albumin on the nanoparticle surface obviously decreases the interaction of nanoparticle with C3b. Furthermore, the high amount of protein pre-adsorption could decrease the probability of nanoparticle-membrane interaction. These results indicate that appropriate modification of nanoparticles with protein provides nanoparticles with better capability of targeting, which could be used to guide nanoparticle design and improve transport efficiency.

Keywords: nanoparticle-membrane interaction; nanoparticles; pre-adsorption; protein corona.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources