Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Feb 1;241(3):729-35.
doi: 10.1042/bj2410729.

The glucagon-induced activation of pyruvate dehydrogenase in hepatocytes is diminished by 4 beta-phorbol 12-myristate 13-acetate. A role for cytoplasmic Ca2+ in dehydrogenase regulation

The glucagon-induced activation of pyruvate dehydrogenase in hepatocytes is diminished by 4 beta-phorbol 12-myristate 13-acetate. A role for cytoplasmic Ca2+ in dehydrogenase regulation

J M Staddon et al. Biochem J. .

Abstract

Phenylephrine, vasopressin and glucagon each increased the amount of active (dephospho) pyruvate dehydrogenase (PDHa) in isolated rat hepatocytes. Treatment with 4 beta-phorbol 12-myristate 13-acetate (PMA) opposed the increase in PDHa caused by both phenylephrine and glucagon, but had no effect on the response to vasopressin: PMA alone had no effect on PDHa. As PMA is known to prevent the phenylephrine-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and to diminish the increase [Ca2+]c caused by glucagon, while having no effect on the ability of vasopressin to increase [Ca2+]c, these data are consistent with the notion that in intact cells an increase in [Ca2+]c results in an increase in the mitochondrial free Ca2+ concentration, which in turn leads to the activation of PDH. In the presence of 2.5 mM-Ca2+, glucagon caused an increase in NAD(P)H fluorescence in hepatocytes. This increase is taken to reflect an enhanced activity of mitochondrial dehydrogenases. PMA alone had no effect on NAD(P)H fluorescence; it did, however, compromise the increase produced by glucagon. When the extracellular free [Ca2+] was decreased to 0.2 microM, glucagon could still increase NAD(P)H fluorescence. Vasopressin also increased fluorescence under these conditions; however, if vasopressin was added after glucagon, no further increase in fluorescence was observed. Treatment of the cells with PMA resulted in a smaller increase in NAD(P)H fluorescence on addition of glucagon: the subsequent addition of vasopressin now caused a further increase in fluorescence. Changes in [Ca2+]c corresponding to the changes in NAD(P)H fluorescence were observed, again supporting the idea that [Ca2+]c indirectly regulates intramitochondrial dehydrogenase activity in intact cells. PMA alone had no effect on pyruvate kinase activity, and the phorbol ester did not prevent the inactivation caused by glucagon. The latter emphasizes the different mechanisms by which the hormone influences mitochondrial and cytoplasmic metabolism.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochem J. 1984 Nov 15;224(1):181-6 - PubMed
    1. FEBS Lett. 1984 May 7;170(1):38-42 - PubMed
    1. J Biol Chem. 1985 Mar 25;260(6):3281-8 - PubMed
    1. J Biol Chem. 1985 Mar 25;260(6):3440-50 - PubMed
    1. Biochem J. 1985 May 15;228(1):277-80 - PubMed