Mechanisms of intracellular protein catabolism. Intracellular fate of microinjected polypeptides translated in vitro
- PMID: 3593224
- PMCID: PMC1147635
- DOI: 10.1042/bj2410817
Mechanisms of intracellular protein catabolism. Intracellular fate of microinjected polypeptides translated in vitro
Abstract
Erythrocyte-mediated microinjection was used to introduce [35S]polypeptides translated in vitro into 3T3-L1 cells. Such [35S]polypeptides are not degraded after loading into erythrocytes and are stable for the first 2 h after microinjection into growing 3T3-L1 cells. Similarly, little or no degradation of microinjected [35S]polypeptides is observed in either growing or confluent 3T3-L1 cells over a 70 h period. Microinjection of reticulocyte lysate alone does not affect the rate of degradation of long-lived endogenous protein. Reductively [3H]methylated lysate haemoglobin is degraded after microinjection by a cytosolic mechanism. Microinjected 125I-labelled bovine serum albumin is rapidly degraded by a cytosolic mechanism at the same rate in the absence or presence of reticulocyte lysate. The data do not support the notion that the observed lack of degradation of microinjected [35S]polypeptides translated in vitro is due to the presence of proteolytic inhibitors in reticulocyte lysates which can inhibit the degradation of microinjected or cellular proteins.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources