Addressing fairness in artificial intelligence for medical imaging
- PMID: 35933408
- PMCID: PMC9357063
- DOI: 10.1038/s41467-022-32186-3
Addressing fairness in artificial intelligence for medical imaging
Abstract
A plethora of work has shown that AI systems can systematically and unfairly be biased against certain populations in multiple scenarios. The field of medical imaging, where AI systems are beginning to be increasingly adopted, is no exception. Here we discuss the meaning of fairness in this area and comment on the potential sources of biases, as well as the strategies available to mitigate them. Finally, we analyze the current state of the field, identifying strengths and highlighting areas of vacancy, challenges and opportunities that lie ahead.
Conflict of interest statement
The authors declare no competing interests.
Figures


Similar articles
-
Five principles for the intelligent use of AI in medical imaging.Intensive Care Med. 2021 Feb;47(2):154-156. doi: 10.1007/s00134-020-06316-8. Epub 2021 Jan 15. Intensive Care Med. 2021. PMID: 33449134 No abstract available.
-
How to keep artificial intelligence evolving in the medical imaging world? Challenges and opportunities.Sci Bull (Beijing). 2023 Apr 15;68(7):648-652. doi: 10.1016/j.scib.2023.03.031. Epub 2023 Mar 21. Sci Bull (Beijing). 2023. PMID: 36964087 No abstract available.
-
Medical Imaging and Privacy in the Era of Artificial Intelligence: Myth, Fallacy, and the Future.J Am Coll Radiol. 2020 Sep;17(9):1159-1162. doi: 10.1016/j.jacr.2020.04.007. Epub 2020 Apr 28. J Am Coll Radiol. 2020. PMID: 32360449 Free PMC article. No abstract available.
-
[Artificial intelligence and medical imaging].Bull Cancer. 2022 Jan;109(1):83-88. doi: 10.1016/j.bulcan.2021.09.009. Epub 2021 Nov 12. Bull Cancer. 2022. PMID: 34782120 Review. French.
-
AI MSK clinical applications: spine imaging.Skeletal Radiol. 2022 Feb;51(2):279-291. doi: 10.1007/s00256-021-03862-0. Epub 2021 Jul 15. Skeletal Radiol. 2022. PMID: 34263344 Free PMC article. Review.
Cited by
-
Fairer AI in ophthalmology via implicit fairness learning for mitigating sexism and ageism.Nat Commun. 2024 Jun 4;15(1):4750. doi: 10.1038/s41467-024-48972-0. Nat Commun. 2024. PMID: 38834557 Free PMC article.
-
Overcoming barriers in the use of artificial intelligence in point of care ultrasound.NPJ Digit Med. 2025 Apr 19;8(1):213. doi: 10.1038/s41746-025-01633-y. NPJ Digit Med. 2025. PMID: 40253547 Free PMC article. Review.
-
Enhancing Fairness in Disease Prediction by Optimizing Multiple Domain Adversarial Networks.bioRxiv [Preprint]. 2023 Aug 26:2023.08.04.551906. doi: 10.1101/2023.08.04.551906. bioRxiv. 2023. Update in: PLOS Digit Health. 2025 May 30;4(5):e0000830. doi: 10.1371/journal.pdig.0000830. PMID: 37609241 Free PMC article. Updated. Preprint.
-
Drop the shortcuts: image augmentation improves fairness and decreases AI detection of race and other demographics from medical images.EBioMedicine. 2024 Apr;102:105047. doi: 10.1016/j.ebiom.2024.105047. Epub 2024 Mar 11. EBioMedicine. 2024. PMID: 38471396 Free PMC article.
-
Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to Trustworthy AI.J Clin Med. 2025 Feb 27;14(5):1605. doi: 10.3390/jcm14051605. J Clin Med. 2025. PMID: 40095575 Free PMC article.
References
-
- Buolamwini, J. & Gebru, T. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency, 77–91 (PMLR, 2018).
-
- Zou, J. & Schiebinger, L. AI can be sexist and racist - it's time to make it fair. Nature559, 324–326 (2018). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical