Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct:111:109119.
doi: 10.1016/j.intimp.2022.109119. Epub 2022 Aug 4.

Carvedilol attenuates brain damage in mice with hepatic encephalopathy

Affiliations

Carvedilol attenuates brain damage in mice with hepatic encephalopathy

Keyvan Amirshahrokhi et al. Int Immunopharmacol. 2022 Oct.

Abstract

Brain injury is the most common and serious consequence of hepatic encephalopathy (HE), and its pathophysiology is poorly understood. Excessive inflammatory, oxidative and apoptotic responses are the major mechanisms involved in the progression of brain injury induced by HE. Carvedilol is an adrenergic receptor antagonist with pronouncedantioxidant and anti-inflammatory activity. The present study aimed to investigatethe effects and underlying mechanisms of carvedilol on HE-induced brain damage in mice. Experimental model of HE was induced by the injection of thioacetamide (200 mg/kg) for two consecutive days and then mice were treated with carvedilol (10 or 20 mg/kg/day, orally) for 3 days in treatment groups. After the behavioral test, animals were sacrificed and the brain tissues were collected for biochemical, real time PCR and immunohistochemical analysis. The results showed that carvedilol improved locomotor impairment and reduced mortality rate in mice with HE. Carvedilol treatment decreased the brain levels of oxidative stress markers and induced Nrf2/HO-1 pathway. Carvedilol inhibited the activity of nuclear factor kappa B (NF-κB) and the expression of pro-inflammatory cytokines TNF-α, IL1β and IL-6 in the brain tissues. Treatment of mice with carvedilol caused a significant reduction in the brain levels of iNOS/NO, myeloperoxidase (MPO), cyclooxygenase (COX)-2 and chemokine MCP-1 as proinflammatory mediators in HE. Moreover, the ratio of Bcl2/Bax was increased and apoptotic cell death was decreased in the brain of mice treated with carvedilol. In conclusion, carvedilol exerted protective effect against HE-induced brain injury through increasing antioxidant defense mechanisms and inhibitionof inflammatory and apoptotic pathways.

Keywords: Apoptosis; Brain damage; Carvedilol; Hepatic encephalopathy; Inflammation; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.