Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Oct 15:320:115750.
doi: 10.1016/j.jenvman.2022.115750. Epub 2022 Aug 4.

Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: Challenges and future perspectives

Affiliations
Review

Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: Challenges and future perspectives

Pei Ling Soo et al. J Environ Manage. .

Abstract

Palm oil is the most utilized vegetable globally which is mostly produced in countries such as Malaysia, Indonesia and Thailand. The great amount of POME generation from palm oil mills is now a threat to the environment and require a suitable treatment of POME to reduce the organic strength in accordance with the standard discharge limit before releasing to the environment. Currently, the technology to combine the anaerobic process and biofilm system in bioreactors have produced a fresh idea in treatments of high strength wastewater like POME. Anaerobic biofilm reactor is a convincing method for POME treatment due to its significant advantages over the conventional biological treatments consisting of anaerobic, aerobic and facultative pond systems. Overall, integrated anaerobic-aerobic bioreactor (IAAB) can remove more than 99% of chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) with the combination of anaerobic and aerobic digestion for POME treatment. It has better performance as compared to up-flow anaerobic sludge blanket (UASB) and up-flow anaerobic filter (UAF) with 80% and 88-94% COD removal efficiency respectively. Anaerobic pond was found to perform well also by removing 97.8% of COD in POME but require long retention time and larger land. Hence, this study aims to provide intensive review of the performance of the anaerobic biofilm reactor in treating POME and the recent advancements in this technology. The limitations and future perspectives in utilization of anaerobic biofilm reactor during its operation in treating POME are discussed.

Keywords: Anaerobic; Biofilm; POME treatments; Palm oil mill effluent (POME).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources