Layered Double Hydroxides for Sustainable Agriculture and Environment: An Overview
- PMID: 35935291
- PMCID: PMC9347968
- DOI: 10.1021/acsomega.2c01405
Layered Double Hydroxides for Sustainable Agriculture and Environment: An Overview
Abstract
Agricultural practices in modern society have a detrimental impact on the health of the ecosystem, environment, and consumers. The significantly high usage rate of chemicals causes serious harm, and the sector demands the development of innovative materials that can foster improved food production and lessen ecological impacts. The majority of layered double hydroxides (LDH) are synthetic. At the same time, some of them occur in the form of natural minerals (hydrotalcite), which have recently emerged as favorable materials and provided advanced and ingenious frontiers in various fields of agriculture through practical application possibilities that can replace conventional agricultural systems. LDH can exchange anions intercalated between the layers in the interlayer structure, and there is evidence that atmospheric carbon dioxide and moisture can completely break down LDH over time. Due to certain unique properties such as tunable structure, specific intercalation chemistry, pH-dependent stability, as well as retention of the guest molecules within interlayers and their subsequent controlled release, LDHs are increasingly investigated as materials to enhance yield, quality of crops, and soil in recent times. This review aims to present the current research progress in the design and development of LDH-based materials as nanoscale agrochemicals to illustrate its relevance in making agro-practices more sustainable and efficient. Specific emphasis is given to the functionality of these materials as effective materials for the slow release of fertilizers and plant growth factors as well as adsorption of toxic agrochemical residues and contaminants. Relevant research efforts have been briefly reviewed, and the potential of LDH as new generation green materials to provide solutions to agricultural problems for improving food productivity and security has been summarized.
© 2022 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Alexandratos N.; Bruinsma J.. World Agriculture Towards 2030/2050, the 2012 Revision, 2012; 10.22004/ag.econ.288998. - DOI
- Alvarez A.; Saez J. M.; Davila Costa J. S.; Colin V. L.; Fuentes M. S.; Cuozzo S. A.; Benimeli C. S.; Polti M. A.; Amoroso M. J. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 2017, 166, 41–62. 10.1016/j.chemosphere.2016.09.070. - DOI - PubMed
- Udeigwe T. K.; Teboh J. M.; Eze P. N.; Hashem Stietiya M.; Kumar V.; Hendrix J.; Mascagni H. J.; Ying T.; Kandakji T. Implications of leading crop production practices on environmental quality and human health. J. Environ. Manage. 2015, 151, 267–279. 10.1016/j.jenvman.2014.11.024. - DOI - PubMed
- Gilliom R. J. Pesticides in US streams and groundwater. Environ. Sci. Technol. 2007, 41, 3408–3414. 10.1021/es072531u. - DOI - PubMed
- Carpenter S. R.; Caraco N. F.; Correll D. L.; Howarth R. W.; Sharpley A. N.; Smith V. H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2. - DOI
- Relyea R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 2005, 15, 618–627. 10.1890/03-5342. - DOI - PubMed
- Ikoyi I.; Fowler A.; Schmalenberger A. One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services. Sci. Total Environ. 2018, 630, 849–858. 10.1016/j.scitotenv.2018.02.263. - DOI - PubMed
- Pimentel D.; Acquay H.; Biltonen M.; Rice P.; Silva M.; Nelson J.; Lipner V.; Giordano S.; Horowitz A.; D'Amore M. Environmental and economic costs of pesticide use. BioScience. 1992, 42, 750–760. 10.2307/1311994. - DOI
- van der Werf H. M. Assessing the impact of pesticides on the environment. Agric. Ecosyst Environ. 1996, 60, 81–96. 10.1016/S0167-8809(96)01096-1. - DOI
- Tscharntke T.; Clough Y.; Wanger T. C.; Jackson L.; Motzke I.; Perfecto I.; Vandermeer J.; Whitbread A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. 10.1016/j.biocon.2012.01.068. - DOI
- Elfvendahl S.; Mihale M.; Kishimba M. A.; Kylin H. Pesticide pollution remains severe after cleanup of a stockpile of obsolete pesticides at Vikuge, Tanzania. AMBIO: J. Hum. Environ. Stud. 2004, 33, 503–508. 10.1579/0044-7447-33.8.503. - DOI - PubMed
- Zhang L.; Yan C.; Guo Q.; Zhang J.; Ruiz-Menjivar J. The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int. J. Low Carbon Technol. 2018, 13, 338–352. 10.1093/ijlct/cty039. - DOI
-
- Mukhopadhyay S. S. Nanotechnology in agriculture: prospects and constraints. Nanotechnol. Sci. Appl. 2014, 7, 63. 10.2147/NSA.S39409. - DOI - PMC - PubMed
- Tilman D.; Cassman K. G.; Matson P. A.; Naylor R.; Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002, 418, 671–677. 10.1038/nature01014. - DOI - PubMed
- Paramo L. A.; Feregrino-Pérez A. A.; Guevara R.; Mendoza S.; Esquivel K. Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials. 2020, 10, 1654. 10.3390/nano10091654. - DOI - PMC - PubMed
-
- Berber M. R.; Hafez I. H. Synthesis of a new nitrate-fertilizer form with a controlled release behavior via an incorporation technique into a clay material. Bull. Environ. Contam. Toxicol. 2018, 101, 751–757. 10.1007/s00128-018-2454-x. - DOI - PubMed
- Benício L. P. F.; Constantino V. R. L.; Pinto F. G.; Vergütz L.; Tronto J.; da Costa L. M. Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustain.Chem. Eng. 2017, 5, 399–409. 10.1021/acssuschemeng.6b01784. - DOI
- Kuthati Y.; Kankala R. K.; Lee C. H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl. Clay Sci. 2015, 112, 100–116. 10.1016/j.clay.2015.04.018. - DOI
- Rives V.; del Arco M.; Martín C. Intercalation of drugs in layered double hydroxides and their controlled release: A review. Appl. Clay Sci. 2014, 88, 239–269. 10.1016/j.clay.2013.12.002. - DOI
-
- Cavani F.; Trifiro F.; Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties, and applications. Catal. Today. 1991, 11, 173–301. 10.1016/0920-5861(91)80068-K. - DOI
- Forano C.; Hibino T.; Leroux F.; Taviot-Gue’Ho C. Layered Double Hydroxides. In Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; pp 1019–1128.
- Konta J. Clay and man: clay raw materials in the service of man. Appl. Clay Sci. 1995, 10, 275–335. 10.1016/0169-1317(95)00029-4. - DOI
- Britto S.; Kamath P. V. Polytypism in the Lithium-Aluminum Layered Double Hydroxides: The [LiAl2 (OH)6]+ Layer as a Structural Synthon. Inorg. Chem. 2011, 50, 5619–5627. 10.1021/ic200312g. - DOI - PubMed
- Yang Y.; Dang L.; Shearer M. J.; Sheng H.; Li W.; Chen J.; Xiao P.; Zhang Y.; Hamers R. J.; Jin S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189. 10.1002/aenm.201703189. - DOI
- Gomez N. A. G.; Sotiles A. R.; Wypych F. Layered double hydroxides with the composition [Mn6Al3 (OH)18][(HPO42–)2A+]. yH2O (A+= Li, Na or K) obtained by topotactic exchange reactions. Appl. Clay Sci. 2020, 193, 105658. 10.1016/j.clay.2020.105658. - DOI
- Li T.; Miras H. N.; Song Y. F. Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications. Catalysts. 2017, 7, 260. 10.3390/catal7090260. - DOI
- Leroux F.; Besse J. P. Layered double hydroxide/polymer nanocomposites. In Interface Science and Technology, Vol. 1; Elsevier, 2004; pp 459–495.
-
- Adachi-Pagano M.; Forano C.; Besse J. P. Delamination of layered double hydroxides by use of surfactants. Chem. Commun. 2000, 91–92. 10.1039/a908251d. - DOI
Publication types
LinkOut - more resources
Full Text Sources