MECHANISTIC AND DATA-DRIVEN MODELS OF CELL SIGNALING: TOOLS FOR FUNDAMENTAL DISCOVERY AND RATIONAL DESIGN OF THERAPY
- PMID: 35935921
- PMCID: PMC9348571
- DOI: 10.1016/j.coisb.2021.05.010
MECHANISTIC AND DATA-DRIVEN MODELS OF CELL SIGNALING: TOOLS FOR FUNDAMENTAL DISCOVERY AND RATIONAL DESIGN OF THERAPY
Abstract
A full understanding of cell signaling processes requires knowledge of protein structure/function relationships, protein-protein interactions, and the abilities of pathways to control phenotypes. Computational models offer a valuable framework for integrating that knowledge to predict the effects of system perturbations and interventions in health and disease. Whereas mechanistic models are well suited for understanding the biophysical basis for signal transduction and principles of therapeutic design, data-driven models are particularly suited to distill complex signaling relationships among samples and between multivariate signaling changes and phenotypes. Both approaches have limitations and provide incomplete representations of signaling biology, but their careful implementation and integration can provide new understanding for how manipulating system variables impacts cellular decisions.
Keywords: cancer; classification; clustering; immunology; parameter estimation; parameter sampling; regression; sensitivity; systems biology; uncertainty.
Figures

Similar articles
-
Mechanistic Computational Models of MicroRNA-Mediated Signaling Networks in Human Diseases.Int J Mol Sci. 2019 Jan 19;20(2):421. doi: 10.3390/ijms20020421. Int J Mol Sci. 2019. PMID: 30669429 Free PMC article. Review.
-
Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic Pan-Cancer Pathway Model.Cell Syst. 2018 Dec 26;7(6):567-579.e6. doi: 10.1016/j.cels.2018.10.013. Epub 2018 Nov 28. Cell Syst. 2018. PMID: 30503647
-
An integrated mechanistic and data-driven computational model predicts cell responses to high- and low-affinity EGFR ligands.bioRxiv [Preprint]. 2023 Jun 26:2023.06.25.543329. doi: 10.1101/2023.06.25.543329. bioRxiv. 2023. PMID: 37425852 Free PMC article. Preprint.
-
Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.Biotechnol Genet Eng Rev. 2008;25:1-40. doi: 10.5661/bger-25-1. Biotechnol Genet Eng Rev. 2008. PMID: 21412348 Review.
-
Systems biology: perspectives on multiscale modeling in research on endocrine-related cancers.Endocr Relat Cancer. 2019 Jun;26(6):R345-R368. doi: 10.1530/ERC-18-0309. Endocr Relat Cancer. 2019. PMID: 30965282 Free PMC article. Review.
Cited by
-
Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways.Int J Mol Sci. 2024 Sep 23;25(18):10204. doi: 10.3390/ijms251810204. Int J Mol Sci. 2024. PMID: 39337687 Free PMC article. Review.
-
Divergent transcriptomic signatures from putative mesenchymal stimuli in glioblastoma cells.Cancer Gene Ther. 2024 Jun;31(6):851-860. doi: 10.1038/s41417-023-00724-w. Epub 2024 Feb 9. Cancer Gene Ther. 2024. PMID: 38337036 Free PMC article.
-
drexml: A command line tool and Python package for drug repurposing.Comput Struct Biotechnol J. 2024 Mar 1;23:1129-1143. doi: 10.1016/j.csbj.2024.02.027. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 38510973 Free PMC article.
-
Quantifying the phenotypic information in mRNA abundance.Mol Syst Biol. 2022 Aug;18(8):e11001. doi: 10.15252/msb.202211001. Mol Syst Biol. 2022. PMID: 35965452 Free PMC article.
-
Deep Neural Networks for Predicting Single-Cell Responses and Probability Landscapes.ACS Synth Biol. 2023 Aug 18;12(8):2367-2381. doi: 10.1021/acssynbio.3c00203. Epub 2023 Jul 19. ACS Synth Biol. 2023. PMID: 37467372 Free PMC article.
References
-
- Lazzara MJ, Lauffenburger DA: Quantitative modeling perspectives on the ErbB system of cell regulatory processes. Exp Cell Res 2009, 315:717–725. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources