Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May-Jun;25(3):473-478.
doi: 10.4103/aian.aian_280_21. Epub 2022 Mar 17.

Significance of Neuronal Autoantibodies in Comparison to Infectious Etiologies among Patients Presenting with Encephalitis in a Region with a High Prevalence of Infections

Affiliations

Significance of Neuronal Autoantibodies in Comparison to Infectious Etiologies among Patients Presenting with Encephalitis in a Region with a High Prevalence of Infections

Thashi Chang et al. Ann Indian Acad Neurol. 2022 May-Jun.

Abstract

Background: Prevalence of antibody-mediated autoimmune encephalitis (AE) is reported to be comparable to infectious encephalitis in Western populations. We evaluated the frequency and significance of AE and neuronal autoantibodies in comparison to infectious etiologies among patients presenting with encephalitis in a South Asian population.

Methods: Ninety-nine consecutive patients with a clinical diagnosis of encephalitis/meningoencephalitis admitted to two of the largest tertiary-care hospitals in Sri Lanka were studied. PCR and ELISA were used to screen viruses while Gram stain and culture were used to screen bacteria. Sera were tested for antibodies binding to primary embryonic rat hippocampal neuronal cultures and cell-based assays for antibodies to NMDAR, LGI1, CASPR2, Contactin2, AMPAR, GABAAR, GABABR, aquaporin-4 and MOG.

Results: Patient ages ranged from 1 month to 73 years (mean = 24.91; SD = 21.33) with a male: female ratio of 1.75:1. A viral etiology was identified in 27.3% and bacterial meningoencephalitis was diagnosed in 17.1%. Sera of nine patients had antibodies binding to live primary neurons, but only five had specific antibodies to CASPR2 (n = 1), NMDAR (n = 2) or GABABR-antibodies (n = 2). Moreover, the patients with CASPR2 antibodies and NMDAR-antibodies were also positive for dengue antibodies. Only the two patients with NMDAR-antibodies had features and responses to immunotherapy consistent with AE.

Conclusions: Identified infectious forms of meningoencephalitis (44.4%) greatly exceeded the occurrence of neuronal autoantibodies (9.1%) and AE (2%) in Sri Lanka, and this may be common in those regions where infections are prevalent.

Keywords: Autoimmune encephalitis; NMDAR; Sri Lanka; meningoencephalitis.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
(a) Primary embryonic rat hippocampal neurons in culture labelled with MAP2 (neuronal stain) and DAPI (nuclear stain). Patient serum antibodies are detected binding to the surface of neuronal cell bodies and processes (top row). In contrast, healthy control serum does not show any binding in the neuronal cultures (bottom row). Scale bar = 10 mm. (b) Representative immunofluorescence images of a cell-based assay. HEK cells transiently transfected with NR1 and labelled with DAPI (nuclear stain) shows cell surface binding with patient serum (top row). Healthy control serum does not show any binding (bottom row). Scale bar = 10 mm

Similar articles

Cited by

References

    1. Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, et al. Causes of encephalitis and differences in their clinical presentations in England: A multicentre, population-based prospective study. Lancet Infect Dis. 2010;10:835–44. - PubMed
    1. Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis. 2012;54:899–904. - PMC - PubMed
    1. Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med. 2018;378:840–51. - PubMed
    1. Dubey D, Pittock SJ, Kelly CR, McKeon A, Lopez-Chiriboga AS, Lennon VA, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol. 2018;83:166–77. - PMC - PubMed
    1. Wickramasinghe N, Dasanayake D, Malavige N, de Silva R, Chang T. Autoimmune encephalitis in a South Asian population. BMC Neurol. 2021;21:203. - PMC - PubMed