Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Nov;75(5):791-5.

Pathogenesis of mucosal injury in the blind loop syndrome

  • PMID: 359400

Pathogenesis of mucosal injury in the blind loop syndrome

A Jonas et al. Gastroenterology. 1978 Nov.

Abstract

Bacterial extracts were prepared from cultures originating in chronic self-filling intestinal blind loops in rats. Their ability to remove active maltase molecules from isolated brush border membranes was studied in vitro. Twelve strains in 51 tested, belonging to one of three species, Bacteroides fragilis, Clostridium perfringens, and Streptococcus fecalis, possessed maltase-releasing activity. The ability to remove maltase correlated well with the ability to hydrolyze p-nitrophenyl-tert-butyloxycarbonyl-l-alaninate (NBA), an ester substrate rapidly hydrolyzed by elastase, but not with substrated favored by tryhsin and chymotrypsin. Maltase-releasing activity from C. perfringens was strongly inhibited by soybean trypsin inhibitor and to a lesser extent by lima bean trypsin inhibitor. Of four chloromethylketone active-site directed inhibitors tested with specificities for elastase, trypsin, and chymotrypsin, inhibition was maximal with elastase-specific inhibitors. In two species, activity was shown to be heat sensitive, and to be inhibited by concentration of the extract. In one species maltase-releasing activity was shown to be due to an enzyme of molecular weight at least 66,000 with the capacity to remove lactase, sucrase, and alkaline phosphatase, as well as maltase. The results indicate that anaerobic or facultatively anaerobic species, previously identified with the pathology of of the blind loop syndrome, contain proteases which are capable of removing components of the intestinal surface membrane. These proteases appear to have elastase-like substrate specificity and may be involved in the etiology of disaccharidase deficiency in bacterial overgrowth syndromes.

PubMed Disclaimer

LinkOut - more resources