Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov;307(Pt 3):135941.
doi: 10.1016/j.chemosphere.2022.135941. Epub 2022 Aug 6.

Unraveling consequences of the co-exposure of polyethylene microplastics and acid rain on plant-microbe-soil system

Affiliations

Unraveling consequences of the co-exposure of polyethylene microplastics and acid rain on plant-microbe-soil system

Ziqiang Liu et al. Chemosphere. 2022 Nov.

Abstract

Emerging microplastics (MPs) pollution and continuing acid rain (AR) co-exist in terrestrial ecosystems, and are considered as threats to ecosystems health. However, few data are available on MPs-AR interactions in plant-microbe-soil systems. Here, a microcosm experiment was manipulated to elucidate the co-exposure of polyethylene MPs (PE MPs; 1%, 5% and 10%) and AR (pH 4.0) on soil-lettuce system, in which the properties of soil and lettuce, and their links were explored. We found that 10% PE MPs increased soil CO2 emission and its temperature sensitivity (Q10) in combination with AR, while 1% PE MPs reduced soil CO2 emission irrespective of AR. PE MPs addition did not influence lettuce production (total biomass) though its photosynthesis was affected. PE MPs exerted negative impact on soil water availability. PE MPs treatments increased NH4+-N content of soil without AR, and dissolved organic carbon content of soil sprayed with AR. 10% PE MPs combined with AR reduced soil microbial biomass, while soil microbial community diversity was not affected by PE MPs or AR. Interestingly, 10% PE MPs addition altered soil microbial community structure, and promoted the complexity and connectivity of soil microbial networks. 5% and 10% PE MPs addition decreased soil urease activity under AR, but this was not the case without AR. These findings highlight the critical role of AR in regulating PE MPs impacts on plant-microbe-soil ecosystems, and the necessity to incorporate other environmental factors when evaluating the actual impacts or risks of MPs pollution in terrestrial ecosystems.

Keywords: Acid rain; Plant-microbe-soil interactions; Polyethylene microplastics; Soil biochemistry; Soil microbial community.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources