The adipocyte microenvironment and cancer
- PMID: 35941408
- DOI: 10.1007/s10555-022-10059-x
The adipocyte microenvironment and cancer
Abstract
Many epithelial tumors grow in the vicinity of or metastasize to adipose tissue. As tumors develop, crosstalk between adipose tissue and cancer cells leads to changes in adipocyte function and paracrine signaling, promoting a microenvironment that supports tumor growth. Over the last decade, it became clear that tumor cells co-opt adipocytes in the tumor microenvironment, converting them into cancer-associated adipocytes (CAA). As adipocytes and cancer cells engage, a metabolic symbiosis ensues that is driven by bi-directional signaling. Many cancers (colon, breast, prostate, lung, ovarian cancer, and hematologic malignancies) stimulate lipolysis in adipocytes, followed by the uptake of fatty acids (FA) from the surrounding adipose tissue. The FA enters the cancer cell through specific fatty acid receptors and binding proteins (e.g., CD36, FATP1) and are used for membrane synthesis, energy metabolism (β-oxidation), or lipid-derived cell signaling molecules (derivatives of arachidonic and linolenic acid). Therefore, blocking adipocyte-derived lipid uptake or lipid-associated metabolic pathways in cancer cells, either with a single agent or in combination with standard of care chemotherapy, might prove to be an effective strategy against cancers that grow in lipid-rich tumor microenvironments.
Keywords: Adipose tissue; Cancer; Immune cells; Lipids; Metabolism; Metastasis.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
References
-
- Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., et al. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651 - DOI - PubMed
-
- Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica et Biophysica Acta, 1831(10), 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010 - DOI - PubMed - PMC
-
- Lengyel, E., Makowski, L., DiGiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004 - DOI - PubMed - PMC
-
- Duman, C., Yaqubi, K., Hoffmann, A., Acikgoz, A. A., Korshunov, A., Bendszus, M., et al. (2019). Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metabolism, 30(2), 274–289 e275. https://doi.org/10.1016/j.cmet.2019.04.004 .
-
- Reilly, S. M., Hung, C. W., Ahmadian, M., Zhao, P., Keinan, O., Gomez, A. V., et al. (2020). Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nature Metabolism, 2(7), 620–634. https://doi.org/10.1038/s42255-020-0217-6 - DOI - PubMed - PMC
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
