Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 9;22(1):683.
doi: 10.1186/s12879-022-07639-1.

Could widespread use of antiviral treatment curb the COVID-19 pandemic? A modeling study

Affiliations

Could widespread use of antiviral treatment curb the COVID-19 pandemic? A modeling study

Laura Matrajt et al. BMC Infect Dis. .

Abstract

Background: Despite the development of safe and effective vaccines, effective treatments for COVID-19 disease are still urgently needed. Several antiviral drugs have shown to be effective in reducing progression of COVID-19 disease.

Methods: In the present work, we use an agent-based mathematical model to assess the potential population impact of the use of antiviral treatments in four countries with different demographic structure and current levels of vaccination coverage: Kenya, Mexico, United States (US) and Belgium. We analyzed antiviral effects on reducing hospitalization and death, and potential antiviral effects on reducing transmission. For each country, we varied daily treatment initiation rate (DTIR) and antiviral effect in reducing transmission (AVT).

Results: Irrespective of location and AVT, widespread antiviral treatment of symptomatic adult infections (20% DTIR) prevented the majority of COVID-19 deaths, and recruiting 6% of all adult symptomatic infections daily reduced mortality by over 20% in all countries. Furthermore, our model projected that targeting antiviral treatment to the oldest age group (65 years old and older, DTIR of 20%) can prevent over 30% of deaths. Our results suggest that early antiviral treatment (as soon as possible after inception of infection) is needed to mitigate transmission, preventing 50% more infections compared to late treatment (started 3 to 5 days after symptoms onset). Our results highlight the synergistic effect of vaccination and antiviral treatment: as the vaccination rate increases, antivirals have a larger relative impact on population transmission. Finally, our model projects that even in highly vaccinated populations, adding antiviral treatment can be extremely helpful to mitigate COVID-19 deaths.

Conclusions: These results suggest that antiviral treatments can become a strategic tool that, in combination with vaccination, can significantly reduce COVID-19 hospitalizations and deaths and can help control SARS-CoV-2 transmission.

Keywords: Agent-based model; Antiviral treatment; COVID-19; Mathematical model; SARS-CoV-2.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Percentage of deaths averted for A Kenya, B Mexico, C United States and D Belgium. Percentage of deaths averted assuming an epidemic wave with parameters similar to those of the Omicron epidemic wave (transmissibility, vaccine effectiveness, and vaccination coverage) when compared to a baseline of no antiviral treatment. For each country, the colors represent four possible values of AVT (25, 50, 75 or 100% reduction in viral transmission in treated symptomatic individuals) and a daily treatment initiation rate (DTIR) of 2–100% of adult symptomatic individuals within the first 5 days of symptoms
Fig. 2
Fig. 2
Percentage of deaths averted for targeted interventions for A Kenya, B Mexico, C United States and D Belgium. Percentage of deaths averted assuming an epidemic wave with parameters similar to those of the Omicron epidemic wave (transmissibility, vaccine effectiveness, and vaccination coverage) when compared to a baseline of no antiviral treatment using antiviral treatment in targeted age groups. For each country, the colors represent four possible values of AVT (25, 50, 75 or 100% reduction in viral transmission in treated symptomatic individuals) and targeting the antiviral treatment to symptomatic adults older than 18, 30, 50 or 65 years of age with a daily treatment initiation rate of 20%
Fig. 3
Fig. 3
Percentage of infections averted for A Kenya, B Mexico, C United States and D Belgium. Percentage of infections averted (compared to a baseline of no antiviral treatment) assuming an epidemic wave with parameters similar to those of the Omicron epidemic wave (transmissibility, vaccine effectiveness, and vaccination coverage). For each country, the colors represent four possible values of AVT (25, 50, 75 or 100% reduction in viral transmission in treated symptomatic individuals) and a daily treatment initiation rate (DTIR) of 2–100% of adult symptomatic individuals within the first 5 days of symptoms
Fig. 4
Fig. 4
Epidemic curves assuming antiviral treatment coverage of 10–100% of eligible symptomatic individuals. Daily new infections assuming no antiviral treatment (Baseline) or assuming coverage of 10–100% of eligible symptomatic individuals in A Kenya, B Mexico, C United States and D Belgium. Here, we assumed an epidemic wave with parameters similar to those of the Omicron epidemic wave (transmissibility, vaccine effectiveness, and vaccination coverage). For each location, each column represents a different value of AVT (25, 50, 75 or 100% reduction in viral load)
Fig. 5
Fig. 5
Percentage of deaths averted assuming early or late treatment initiation. Percentage of deaths averted (compared to a baseline of no antiviral treatment) for A Kenya, B Mexico, C United States and D Belgium for early (within the first two days of symptoms, left column) or late (between days 2 and 5 of symptoms, right column) treatment. Here, we assumed an epidemic wave with parameters similar to those of the Omicron epidemic wave (transmissibility, vaccine effectiveness, and vaccination coverage). For each country, the colors represent four possible values of AVT (25, 50, 75 or 100% reduction in viral transmission in treated symptomatic individuals) and covering 10–100% of eligible symptomatic individuals

Update of

Similar articles

Cited by

References

    1. Johns Hopkins Coronavirus Resource Center. Home—Johns Hopkins Coronavirus Resource Center. 2021. https://coronavirus.jhu.edu/. Accessed 28 Sep 2021.
    1. Nicole B, Erika M. On behalf of the McGill University COVID19 Vaccine Tracker Team. COVID-19 vaccine development and approvals tracker. 2020. https://covid19.trackvaccines.org/. Accessed 28 Sep 2021.
    1. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Giattino C, Rodés-Guirao L. A global database of COVID-19 vaccinations. Nat Hum Behav. 2021;5(7):947–953. doi: 10.1038/s41562-021-01122-8. - DOI - PubMed
    1. Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, Kimball S, El-Mohandes A. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2021;27(2):225–228. doi: 10.1038/s41591-020-1124-9. - DOI - PMC - PubMed
    1. Campbell F, Archer B, Laurenson-Schafer H, Jinnai Y, Konings F, Batra N, Pavlin B, Vandemaele K, Van Kerkhove MD, Jombart T, Morgan O, le Polain de Waroux O. Increased transmissibility and global spread of sars-cov-2 variants of concern as at June 2021. Eurosurveillance 2021. 10.2807/1560-7917.ES.2021.26.24.2100509 - PMC - PubMed

Substances