Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov:53 Suppl 3:S69-S73.
doi: 10.1016/j.injury.2022.05.057. Epub 2022 Aug 4.

Evolution of implants and advancements for osseointegration: A narrative review

Affiliations
Free article
Review

Evolution of implants and advancements for osseointegration: A narrative review

Nike Walter et al. Injury. 2022 Nov.
Free article

Abstract

Since ancient times, reduction and internal fixation has been applied to restore skeletal integrity. Despite advances in the understanding of fracture healing, the risk of complication such as implant loosening or implant-related infection still depicts a challenging complication. Nowadays, a great deal of research is devoted to unreveal the impact of implant surface modifications on osteogenic processes to enhance bone consolidation and osseointegration. This narrative review is aimed to (1) show the evolution and already achieved milestones of implant optimization, and (2) to outline the key factors that contribute to an enhanced osseointegration. Different physical and chemical roughening techniques are currently applied in various studies. Surface patterning on the nanoscale has been found to be an essential factor for the biological response, achievable by e.g. anodisation or laser texturing. Besides surface roughening, also different coating methods are vastly investigated. Next to metal or inorganic compounds as coating material, a variety of biomolecules is currently studied for their osteosupportive capacities. Osseointegration can be improved by surface modification on the micro and nanoscale. Bioactive agents can further improve the osseointegration potential. Used agents at the moment are e.g. inorganic compounds, growth factors (BMPs and non-BMPs) and antiresorptive drugs. The advancement in research on new implant generations therefore aims at actively supporting osseointegration processing.

Keywords: Fracture healing; Implant; Osseointegration; Surface optimization.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interest

Substances

LinkOut - more resources