Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug;608(7922):293-297.
doi: 10.1038/s41586-022-04943-3. Epub 2022 Aug 10.

Realizing a 1D topological gauge theory in an optically dressed BEC

Affiliations

Realizing a 1D topological gauge theory in an optically dressed BEC

Anika Frölian et al. Nature. 2022 Aug.

Abstract

Topological gauge theories describe the low-energy properties of certain strongly correlated quantum systems through effective weakly interacting models1,2. A prime example is the Chern-Simons theory of fractional quantum Hall states, where anyonic excitations emerge from the coupling between weakly interacting matter particles and a density-dependent gauge field3. Although in traditional solid-state platforms such gauge theories are only convenient theoretical constructions, engineered quantum systems enable their direct implementation and provide a fertile playground to investigate their phenomenology without the need for strong interactions4. Here, we report the quantum simulation of a topological gauge theory by realizing a one-dimensional reduction of the Chern-Simons theory (the chiral BF theory5-7) in a Bose-Einstein condensate. Using the local conservation laws of the theory, we eliminate the gauge degrees of freedom in favour of chiral matter interactions8-11, which we engineer by synthesizing optically dressed atomic states with momentum-dependent scattering properties. This allows us to reveal the key properties of the chiral BF theory: the formation of chiral solitons and the emergence of an electric field generated by the system itself. Our results expand the scope of quantum simulation to topological gauge theories and open a route to the implementation of analogous gauge theories in higher dimensions12.

PubMed Disclaimer

Similar articles

Cited by

  • Observing anyonization of bosons in a quantum gas.
    Dhar S, Wang B, Horvath M, Vashisht A, Zeng Y, Zvonarev MB, Goldman N, Guo Y, Landini M, Nägerl HC. Dhar S, et al. Nature. 2025 Jun;642(8066):53-57. doi: 10.1038/s41586-025-09016-9. Epub 2025 May 28. Nature. 2025. PMID: 40425811 Free PMC article.
  • Observation of string breaking on a (2 + 1)D Rydberg quantum simulator.
    González-Cuadra D, Hamdan M, Zache TV, Braverman B, Kornjača M, Lukin A, Cantú SH, Liu F, Wang ST, Keesling A, Lukin MD, Zoller P, Bylinskii A. González-Cuadra D, et al. Nature. 2025 Jun;642(8067):321-326. doi: 10.1038/s41586-025-09051-6. Epub 2025 Jun 4. Nature. 2025. PMID: 40468082
  • Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories.
    Cochran TA, Jobst B, Rosenberg E, Lensky YD, Gyawali G, Eassa N, Will M, Szasz A, Abanin D, Acharya R, Aghababaie Beni L, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Babbush R, Ballard B, Bardin JC, Bengtsson A, Bilmes A, Bourassa A, Bovaird J, Broughton M, Browne DA, Buchea B, Buckley BB, Burger T, Burkett B, Bushnell N, Cabrera A, Campero J, Chang HS, Chen Z, Chiaro B, Claes J, Cleland AY, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Das S, Demura S, De Lorenzo L, Di Paolo A, Donohoe P, Drozdov I, Dunsworth A, Eickbusch A, Elbag AM, Elzouka M, Erickson C, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Ganjam S, Gasca R, Genois É, Giang W, Gilboa D, Gosula R, Grajales Dau A, Graumann D, Greene A, Gross JA, Habegger S, Hansen M, Harrigan MP, Harrington SD, Heu P, Higgott O, Hilton J, Huang HY, Huff A, Huggins W, Jeffrey E, Jiang Z, Jones C, Joshi C, Juhas P, Kafri D, Kang H, Karamlou AH, Kechedzhi K, Khaire T, Khattar T, Khezri M, Kim S, Klimov P, Kobrin B, Korotkov A, Kostritsa F, Kreikebaum J, Kurilovich V, Landhuis D, Lange-Dei T, Langley B, Lau KM, Ledford J, Lee K, Lester B, Le Guevel L, Li W, Lill AT, Livingston W, Locharla A, Lundahl… See abstract for full author list ➔ Cochran TA, et al. Nature. 2025 Jun;642(8067):315-320. doi: 10.1038/s41586-025-08999-9. Epub 2025 Jun 4. Nature. 2025. PMID: 40468064 Free PMC article.

References

    1. Fradkin, E. Field Theories of Condensed Matter Physics (Cambridge Univ. Press, 2013).
    1. Wen, X.-G. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).
    1. Ezawa, Z. F. Quantum Hall Effects: Field Theoretical Approach and Related Topics (World Scientific, 2008).
    1. Weeks, C., Rosenberg, G., Seradjeh, B. & Franz, M. Anyons in a weakly interacting system. Nat. Phys. 3, 796–801 (2007). - DOI
    1. Rabello, S. J. A gauge theory of one-dimensional anyons. Phys. Lett. B 363, 180–183 (1995). - DOI

Publication types

LinkOut - more resources