Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug;608(7922):317-323.
doi: 10.1038/s41586-022-04961-1. Epub 2022 Aug 10.

Perovskite superlattices with efficient carrier dynamics

Affiliations
Free article

Perovskite superlattices with efficient carrier dynamics

Yusheng Lei et al. Nature. 2022 Aug.
Free article

Abstract

Compared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; B2An-1MnX3n+1, such as B = R-NH3+, A = HC(NH2)2+, Cs+; M = Pb2+, Sn2+; X = Cl-, Br-, I-) with periodic inorganic-organic structures have shown promising stability and hysteresis-free electrical performance1-6. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomly oriented quantum wells in polycrystals7. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers8. Furthermore, the strong quantum confinement from the organic spacers limits the generation and transport of free carriers9,10. Also, lead-free metal halide perovskites have been developed but their device performance is limited by their low crystallinity and structural instability11. Here we report a low-dimensional metal halide perovskite BA2MAn-1SnnI3n+1 (BA, butylammonium; MA, methylammonium; n = 1, 3, 5) superlattice by chemical epitaxy. The inorganic slabs are aligned vertical to the substrate and interconnected in a criss-cross 2D network parallel to the substrate, leading to efficient carrier transport in three dimensions. A lattice-mismatched substrate compresses the organic spacers, which weakens the quantum confinement. The performance of a superlattice solar cell has been certified under the quasi-steady state, showing a stable 12.36% photoelectric conversion efficiency. Moreover, an intraband exciton relaxation process may have yielded an unusually high open-circuit voltage (VOC).

PubMed Disclaimer

References

    1. Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016). - DOI
    1. de Arquer, F. P. G., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017). - DOI
    1. Lei, Y., Chen, Y. & Xu, S. Single-crystal halide perovskites: opportunities and challenges. Matter 4, 2266–2308 (2021). - DOI
    1. Park, N. G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10, 1903106 (2020). - DOI
    1. Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017). - PubMed - DOI

Publication types