A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis
- PMID: 35950213
- PMCID: PMC9358013
- DOI: 10.1016/j.omtn.2022.07.004
A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis
Abstract
A sharp increase in multidrug-resistant tuberculosis (MDR-TB) threatens human health. Spontaneous mutation in essential gene confers an ability of Mycobacterium tuberculosis resistance to anti-TB drugs. However, conventional laboratory strategies for identification and prediction of the mutations in this slowly growing species remain challenging. Here, by combining XCas9 nickase and the error-prone DNA polymerase A from M. tuberculosis, we constructed a CRISPR-guided DNA polymerase system, CAMPER, for effective site-directed mutagenesis of drug-target genes in mycobacteria. CAMPER was able to generate mutagenesis of all nucleotides at user-defined loci, and its bidirectional mutagenesis at nick sites allowed editing windows with lengths up to 80 nucleotides. Mutagenesis of drug-targeted genes in Mycobacterium smegmatis and M. tuberculosis with this system significantly increased the fraction of the antibiotic-resistant bacterial population to a level approximately 60- to 120-fold higher than that in unedited cells. Moreover, this strategy could facilitate the discovery of the mutation conferring antibiotic resistance and enable a rapid verification of the growth phenotype-mutation genotype association. Our data demonstrate that CAMPER facilitates targeted mutagenesis of genomic loci and thus may be useful for broad functions such as resistance prediction and development of novel TB therapies.
Keywords: CRISPR; Mycobacterium tuberculosis; drug resistance; fitness; high-throughput sequencing; mutation.
© 2022 The Authors.
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window.Nature. 2018 Aug;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub 2018 Aug 1. Nature. 2018. PMID: 30069054
-
[Frontier of mycobacterium research--host vs. mycobacterium].Kekkaku. 2005 Sep;80(9):613-29. Kekkaku. 2005. PMID: 16245793 Japanese.
-
Genotype analysis of ofloxacin-resistant multidrug-resistant Mycobacterium tuberculosis isolates in a multicentered study from India.Indian J Med Res. 2020 Apr;151(4):361-370. doi: 10.4103/ijmr.IJMR_493_18. Indian J Med Res. 2020. PMID: 32461400 Free PMC article.
-
[Development of antituberculous drugs: current status and future prospects].Kekkaku. 2006 Dec;81(12):753-74. Kekkaku. 2006. PMID: 17240921 Review. Japanese.
-
Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis.Tuberculosis (Edinb). 2021 Jul;129:102091. doi: 10.1016/j.tube.2021.102091. Epub 2021 May 21. Tuberculosis (Edinb). 2021. PMID: 34090078 Review.
Cited by
-
Revolutionizing Tuberculosis Management With Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas Technology: A Comprehensive Literature Review.Cureus. 2024 Oct 17;16(10):e71697. doi: 10.7759/cureus.71697. eCollection 2024 Oct. Cureus. 2024. PMID: 39552996 Free PMC article. Review.
-
Innovative Strategies for Combating Multidrug-Resistant Tuberculosis: Advances in Drug Delivery Systems and Treatment.Microorganisms. 2025 Mar 24;13(4):722. doi: 10.3390/microorganisms13040722. Microorganisms. 2025. PMID: 40284559 Free PMC article. Review.
-
CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders.Cell Commun Signal. 2024 Jun 14;22(1):329. doi: 10.1186/s12964-024-01713-8. Cell Commun Signal. 2024. PMID: 38877530 Free PMC article. Review.
-
The future of CRISPR in Mycobacterium tuberculosis infection.J Biomed Sci. 2023 May 27;30(1):34. doi: 10.1186/s12929-023-00932-4. J Biomed Sci. 2023. PMID: 37245014 Free PMC article. Review.
-
Application of CRISPR-cas-based technology for the identification of tuberculosis, drug discovery and vaccine development.Mol Biol Rep. 2024 Mar 29;51(1):466. doi: 10.1007/s11033-024-09424-6. Mol Biol Rep. 2024. PMID: 38551745 Review.
References
-
- Dorothee Heemskerk M.C., Marais B., Farrar. J. Treatment. Chapter 5. Springer; 2015. Tuberculosis in adults and children. - PubMed
-
- Aziz M.A., Wright A., Laszlo A., De Muynck A., Portaels F., Van Deun A., Wells C., Nunn P., Blanc L., Raviglione M., et al. WHO/International Union Against Tuberculosis And Lung Disease Global Project on Anti-tuberculosis Drug Resistance Surveillance Epidemiology of antituberculosis drug resistance (the global Project on anti-tuberculosis drug resistance surveillance): an updated analysis. Lancet. 2006;368:2142–2154. doi: 10.1016/S0140-6736(06)69863-2. - DOI - PubMed
-
- WHO global strategy for containment of antimicrobial resistance. (Geneva: World Health Organization), 2001.
LinkOut - more resources
Full Text Sources