Sterically Shielded Hydrophilic Analogs of Indocyanine Green
- PMID: 35950971
- PMCID: PMC9894567
- DOI: 10.1021/acs.joc.2c01229
Sterically Shielded Hydrophilic Analogs of Indocyanine Green
Abstract
A modular synthetic process enables two or four shielding arms to be appended strategically over the fluorochromes of near-infrared cyanine heptamethine dyes to create hydrophilic analogs of clinically approved indocyanine green. A key synthetic step is the facile substitution of a heptamethine 4'-Cl atom by a phenol bearing two triethylene glycol chains. The lead compound is a heptamethine dye with four shielding arms, and a series of comparative spectroscopy studies showed that the shielding arms (a) increased dye photostability and chemical stability and (b) inhibited dye self-aggregation and association with albumin protein. In mice, the dye cleared from the blood primarily through the renal pathway rather than the biliary pathway for ICG. This change in biodistribution reflects the much smaller hydrodynamic diameter of the shielded hydrophilic ICG analog compared to the 67 kDa size of the ICG/albumin complex. An attractive feature of versatile synthetic chemistry is the capability to systematically alter the dye's hydrodynamic diameter. The sterically shielded hydrophilic ICG dye platform is well-suited for immediate incorporation into dynamic contrast-enhanced (DCE) spectroscopy or imaging protocols using the same cameras and detectors that have been optimized for ICG.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







Similar articles
-
Comparative biodistribution in mice of cyanine dyes loaded in lipid nanoparticles.Eur J Pharm Biopharm. 2015 Jun;93:1-10. doi: 10.1016/j.ejpb.2015.03.019. Epub 2015 Mar 21. Eur J Pharm Biopharm. 2015. PMID: 25805562
-
Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near-Infrared Fluorescence Imaging.Angew Chem Int Ed Engl. 2020 Jul 13;59(29):12154-12161. doi: 10.1002/anie.202004449. Epub 2020 May 11. Angew Chem Int Ed Engl. 2020. PMID: 32324959 Free PMC article.
-
Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study.Biomacromolecules. 2013 Sep 9;14(9):3027-33. doi: 10.1021/bm400839b. Epub 2013 Aug 13. Biomacromolecules. 2013. PMID: 23941524
-
Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography.Surv Ophthalmol. 2000 Jul-Aug;45(1):15-27. doi: 10.1016/s0039-6257(00)00123-5. Surv Ophthalmol. 2000. PMID: 10946079 Review.
-
Indocyanine green-incorporating nanoparticles for cancer theranostics.Theranostics. 2018 Feb 2;8(5):1227-1242. doi: 10.7150/thno.22872. eCollection 2018. Theranostics. 2018. PMID: 29507616 Free PMC article. Review.
Cited by
-
Water-soluble chromenylium dyes for shortwave infrared imaging in mice.Chem. 2023 Dec 14;9(12):3648-3665. doi: 10.1016/j.chempr.2023.08.021. Epub 2023 Sep 18. Chem. 2023. PMID: 38283614 Free PMC article.
-
Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance.JACS Au. 2024 Aug 8;4(8):3007-3017. doi: 10.1021/jacsau.4c00343. eCollection 2024 Aug 26. JACS Au. 2024. PMID: 39211623 Free PMC article.
-
Fluorescent molecular probe for in vivo and in vitro targeting and imaging of an intracellular bacterial infection.Chem Sci. 2025 Mar 24;16(18):7902-7911. doi: 10.1039/d4sc05680a. eCollection 2025 May 7. Chem Sci. 2025. PMID: 40191126 Free PMC article.
-
Steric protection of near-infrared fluorescent dyes for enhanced bioimaging.J Mater Chem B. 2024 Aug 28;12(34):8310-8320. doi: 10.1039/d4tb01281j. J Mater Chem B. 2024. PMID: 39101969 Free PMC article. Review.
-
Doubly Strapped Zwitterionic NIR-I and NIR-II Heptamethine Cyanine Dyes for Bioconjugation and Fluorescence Imaging.Angew Chem Int Ed Engl. 2023 Jul 10;62(28):e202305062. doi: 10.1002/anie.202305062. Epub 2023 May 31. Angew Chem Int Ed Engl. 2023. PMID: 37163228 Free PMC article.
References
-
- Reinhart MB; Huntington CR; Blair LJ; Heniford BT; Augenstein VA Indocyanine Green :Historical Context, Current Applications, and Future Considerations. Surg. Innov. 2016, 23 (2), 166–175. - PubMed
-
- Kuebler WM; Sckell A; Habler O; Kleen M; Kuhnle GEH; Welte M; Messmer K; Goetz AE Noninvasive Measurement of Regional Cerebral Blood Flow by Near-Infrared Spectroscopy and Indocyanine Green. J. Cereb. Blood Flow Metab. 1998, 18 (4), 445–456. - PubMed
-
- Green MS; Sehgal S; Tariq R Near-Infrared Spectroscopy: The New Must Have Tool in the Intensive Care Unit? Semin. Cardiothorac. Vasc. Anesth. 2016, 20 (3), 213–224. - PubMed
-
- Goncalves LN; van den Hoven P; van Schaik J; Leeuwenburgh L; Hendricks CHF; Verduijn PS; van der Bogt KEA; van Rijswijk CSP; Schepers A; Vahrmeijer AL; Hamming JF; van der Vorst JR Perfusion Parameters in Near-Infrared Fluorescence Imaging with Indocyanine Green: A Systematic Review of the Literature. Life 2021, 11 (5), 433. - PMC - PubMed
-
- Seeliger B; Agnus V; Mascagni P; Barberio M; Longo F; Lapergola A; Mutter D; Klymchenko AS; Chand M; Marescaux J; Diana M Simultaneous Computer-Assisted Assessment of Mucosal and Serosal Perfusion in a Model of Segmental Colonic Ischemia. Surg. Endosc. 2020, 34 (11), 4818–4827. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources