Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor
- PMID: 35952802
- DOI: 10.1016/j.ijpharm.2022.122064
Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor
Abstract
The improved drug delivery systems (DDS) are needed for the targeted delivery of their therapeutic cargo (biologically active protein/peptide molecules, nucleic acids, vaccines, etc.) to diseased cells. Thus, we aimed to develop magnetite nanoparticles (Fe3O4), stabilized with polyethylene glycol (PEG) and decorated (surface-functionalized) with folic acid (FA) (Fe3O4@PEG@FA) to ensure targeted internalization in cells expressing the folic acid receptors (FR). The Fe3O4@PEG@FA nanoparticles were synthesized by co-precipitation in a one-pot methodology. Curcumin (Curc), a polyphenol with anti-tumoral activity, was loaded on the nanoparticles, and FA-targeted (Fe3O4@PEG@FA@Curc) and non-targeted (Fe3O4@PEG@Curc) systems were obtained. The internalization of Fe3O4@PEG@FA@Curc and Fe3O4@PEG@Curc nanoparticles was determined in two tumor cell lines, the FR-positive MCF-7 human breast carcinoma cell line and A549 human lung adenocarcinoma cell line, expressing a low level of FR. The results showed that MCF-7 cells internalize FA-functionalized nanoparticles to a greater extent than non-targeted ones and also than A549 cells. The competitive studies performed in the presence of FA in excess suggested that internalization is an FR-dependent process. The increased internalization of Fe3O4@PEG@FA@Curc nanoparticles in MCF-7 cells is correlated with increased cytotoxicity in this cell line compared to A549 cells. In conclusion, the FA-functionalized magnetic systems can ensure a better internalization of the nanoparticles and can be used to deliver various therapeutic agents, both in cancer treatment and also in the treatment of other inflammation-associated diseases such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Crohn's disease or atherosclerosis.
Keywords: Cellular internalization; Folic acid decoration; Stabilized magnetite nanostructures; Targeted drug delivery; Tumor cells.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
