Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct:146:107096.
doi: 10.1016/j.vph.2022.107096. Epub 2022 Aug 8.

The short-chain fatty acid butyrate accelerates vascular calcification via regulation of histone deacetylases and NF-κB signaling

Affiliations

The short-chain fatty acid butyrate accelerates vascular calcification via regulation of histone deacetylases and NF-κB signaling

Hui Zhong et al. Vascul Pharmacol. 2022 Oct.

Abstract

Recent studies have shown that short-chain fatty acids (SCFAs), primarily acetate, propionate and butyrate, play a crucial role in the pathogenesis of cardiovascular disease. Whether SCFAs regulate vascular calcification, a common pathological change in cardiovascular tissues, remains unclear. This study aimed to investigate the potential role of SCFAs in vascular calcification. Using cellular and animal models of vascular calcification, we showed that butyrate significantly enhanced high phosphate (Pi)-induced calcification and osteogenic transition of vascular smooth muscle cells (VSMC) in vitro, whereas acetate and propionate had no effects. Subsequent studies confirmed that butyrate significantly promoted high Pi-induced aortic ring calcification ex vivo and high dose vitamin D3 (vD3)-induced mouse vascular calcification in vivo. Mechanistically, butyrate significantly inhibited histone deacetylase (HDAC) expression in VSMCs, and a pan HDAC inhibitor Trichostatin A showed similar inductive effects on calcification and osteogenic transition of VSMCs to butyrate. In addition, the SCFA sensing receptors Gpr41 and Gpr109a were primarily expressed by VSMCs, and butyrate induced the rapid activation of NF-κB, Wnt and Akt signaling in VSMCs. Intriguingly, the NF-κB inhibitor SC75741 significantly attenuated butyrate-induced calcification and the osteogenic gene Msx2 expression in VSMCs. We showed that knockdown of Gpr41 but not Gpr109a attenuated butyrate-induced VSMC calcification. This study reveals that butyrate accelerates vascular calcification via its dual effects on HDAC inhibition and NF-κB activation. Our data provide novel insights into the role of microbe-host interaction in vascular calcification, and may have implications for the development of potential therapy for vascular calcification.

Keywords: Histone deacetylase; NF-κB signaling; The SCFA butyrate; Vascular calcification; Vascular smooth muscle cells.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that there is no conflict of interest.

Similar articles

Cited by

Publication types

LinkOut - more resources