Study of Microstructural Morphology of Ti-6Al-4V Alloy by Crystallographic Analysis and Phase Field Simulation
- PMID: 35955256
- PMCID: PMC9369925
- DOI: 10.3390/ma15155325
Study of Microstructural Morphology of Ti-6Al-4V Alloy by Crystallographic Analysis and Phase Field Simulation
Abstract
Formation of a habit plane during martensitic transformation is related to an invariant plane strain transformation, which involves dislocation glide and twins. In the current work, the Phenomenological Theory of Martensitic Transformation (PTMT) is employed to study the crystallographic features while the phase field simulation is used to study the microstructure evolution for martensitic transformation of Ti-6Al-4V alloy. Results show that mechanical constraints play a key role in the microstructure evolution. It is shown that a twinned structure with very small twinned variants is geometrically difficult to form due to the lattice parameters of Ti-6Al-4V alloy. It is concluded that the predicted habit plane from the PTMT is consistent with results of the micro-elastic theory. The formation of a triangular morphology is favored geometrically and elastically.
Keywords: Phenomenological Theory of Martensitic Transformation; Ti-6Al-4V; martensitic transformation; phase field simulation; twins.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Formation of Structure and Properties of Two-Phase Ti-6Al-4V Alloy during Cold Metal Transfer Additive Deposition with Interpass Forging.Materials (Basel). 2021 Aug 6;14(16):4415. doi: 10.3390/ma14164415. Materials (Basel). 2021. PMID: 34442935 Free PMC article.
-
Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy via Annealing Heat Treatment.Micromachines (Basel). 2022 Feb 19;13(2):331. doi: 10.3390/mi13020331. Micromachines (Basel). 2022. PMID: 35208455 Free PMC article.
-
Nanotube Nucleation Phenomena of Titanium Dioxide on the Ti-6Al-4V Alloy Using Anodic Titanium Oxide Technique.J Nanosci Nanotechnol. 2015 Jan;15(1):467-70. doi: 10.1166/jnn.2015.8387. J Nanosci Nanotechnol. 2015. PMID: 26328383
-
Quantification of Microstructural Features and Prediction of Mechanical Properties of a Dual-Phase Ti-6Al-4V Alloy.Materials (Basel). 2016 Jul 28;9(8):628. doi: 10.3390/ma9080628. Materials (Basel). 2016. PMID: 28773751 Free PMC article.
-
Crystal and Dislocation Characteristics of Ti-6Al-4V Alloy Under Effect of Laser Shock Peening.Materials (Basel). 2025 Jan 15;18(2):378. doi: 10.3390/ma18020378. Materials (Basel). 2025. PMID: 39859850 Free PMC article.
Cited by
-
Experimental-numerical Investigation of ⍺/β-phase formation within thin electron beam melted Ti-6Al-4V.Heliyon. 2024 Feb 9;10(4):e25971. doi: 10.1016/j.heliyon.2024.e25971. eCollection 2024 Feb 29. Heliyon. 2024. PMID: 38375269 Free PMC article.
-
AI-Powered Very-High-Cycle Fatigue Control: Optimizing Microstructural Design for Selective Laser Melted Ti-6Al-4V.Materials (Basel). 2025 Mar 26;18(7):1472. doi: 10.3390/ma18071472. Materials (Basel). 2025. PMID: 40271631 Free PMC article.
-
Atomistic-Based Fatigue Property Normalization Through Maximum A Posteriori Optimization in Additive Manufacturing.Materials (Basel). 2025 Jul 15;18(14):3332. doi: 10.3390/ma18143332. Materials (Basel). 2025. PMID: 40731542 Free PMC article.
References
-
- Donachie M.J. Titanium: A Technical Guide. 2nd ed. ASM International; Materials Park, OH, USA: 2000.
-
- Cui C., Hu B., Zhao L., Liu S. Titanium alloy production technology, market prospects and industry development. Mater. Des. 2011;32:1684–1691. doi: 10.1016/j.matdes.2010.09.011. - DOI
-
- Xu W., Lui E.W., Pateras A., Qian M., Brandt M.J. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017;125:390–400. doi: 10.1016/j.actamat.2016.12.027. - DOI
-
- Dai N., Zhang L.C., Zhang J., Zhang X., Ni Q., Chen Y., Wu M., Yang C. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci. 2016;111:703–710. doi: 10.1016/j.corsci.2016.06.009. - DOI
-
- Bocchetta P., Chen L.Y., Tardelli J.D.C., Reis A.C.D., Almeraya-Calderón F., Leo P. Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti alloys. Coatings. 2021;11:487. doi: 10.3390/coatings11050487. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources