Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Nov 10;253(21):7731-7.

In vitro depolarization of Escherichia coli membrane vesicles by colicin Ia

  • PMID: 359553
Free article

In vitro depolarization of Escherichia coli membrane vesicles by colicin Ia

H Tokuda et al. J Biol Chem. .
Free article

Abstract

Conditions are reported under which membrane vesicles prepared from Escherichia coli K12 are depolarized by colicin Ia. Although incubation of membrane vesicles with active colicin Ia affects neither transport activity nor the ability of such vesicles to generate a deltapH or deltapsi, a single freeze-thaw cycle of such vesicles in the presence of colicin Ia leads to 1) retention of the colicin by the vesicles, 2) inactivation of transport activity, and 3) membrane depolarization, with a concomitant increase in the transmembrane deltapH. These effects are dependent upon the presence of active colicin Ia during the freeze-thaw cycle. These findings are consistent with our previous results showing that Ia-treated whole cells or membrane vesicles prepared from such cells are defective in their ability to generate a deltapsi, yet generate an increased deltapH (Tokuda, H., and Konisky, J. (1978) Proc. Natl. Acad. Sci. U. S. A., 75, 2579--2583). In addition to its effect on vesicles prepared from sensitive cells, we show that vesicles prepared from both colicin Ia-resistant and -tolerant cells are depolarized by colicin treatment with a concomitant increase in deltapH. It is concluded that the final target of colicin Ia is the cytoplasmic membrane. A model for the mechanism of colicin Ia action is presented in which colicin Ia binds to the specific colicin Ia outer membrane receptor and is subsequently translocated to the cytoplasmic membrane where its integration leads to the formation of ion channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources