Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 4;23(15):8675.
doi: 10.3390/ijms23158675.

FGFR3-TACCs3 Fusions and Their Clinical Relevance in Human Glioblastoma

Affiliations
Review

FGFR3-TACCs3 Fusions and Their Clinical Relevance in Human Glioblastoma

Hanna Gött et al. Int J Mol Sci. .

Abstract

Oncogenic fusion genes have emerged as successful targets in several malignancies, such as chronic myeloid leukemia and lung cancer. Fusion of the fibroblast growth receptor 3 and the transforming acidic coiled coil containing protein-FGFR3-TACC3 fusion-is prevalent in 3-4% of human glioblastoma. The fusion protein leads to the constitutively activated kinase signaling of FGFR3 and thereby promotes cell proliferation and tumor progression. The subgroup of FGFR3-TACC3 fusion-positive glioblastomas presents with recurrent clinical and histomolecular characteristics, defining a distinctive subtype of IDH-wildtype glioblastoma. This review aims to provide an overview of the available literature on FGFR3-TACC3 fusions in glioblastoma and possible implications for actual clinical practice.

Keywords: FGFR; FGFR3-TACC3; TACC; glioblastoma; molecular diagnostics; molecular signaling; oncogenic fusion; tyrosine kinase receptors.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
FGFR kinase signaling and activation of MAPK pathways leading to cell proliferation and cell survival (created with biorender.com, accessed on 21 May 2022).
Figure 2
Figure 2
The FGFR3 and the TACC3 gene are both located on chromosome 4p16.3. The oncogenic fusion gene codes for FGFR3, harboring an intact kinase domain fused to the TACC3 gene, including the functioning coiled-coil domain (created with biorender.com, accessed on 21 May 2022).

Similar articles

  • Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by Tyrosine Phosphorylation.
    Nelson KN, Meyer AN, Siari A, Campos AR, Motamedchaboki K, Donoghue DJ. Nelson KN, et al. Mol Cancer Res. 2016 May;14(5):458-69. doi: 10.1158/1541-7786.MCR-15-0497. Epub 2016 Feb 11. Mol Cancer Res. 2016. PMID: 26869289
  • Transforming fusions of FGFR and TACC genes in human glioblastoma.
    Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, Qiu K, Gao Z, Ceccarelli M, Riccardi R, Brat DJ, Guha A, Aldape K, Golfinos JG, Zagzag D, Mikkelsen T, Finocchiaro G, Lasorella A, Rabadan R, Iavarone A. Singh D, et al. Science. 2012 Sep 7;337(6099):1231-5. doi: 10.1126/science.1220834. Epub 2012 Jul 26. Science. 2012. PMID: 22837387 Free PMC article.
  • Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma.
    Di Stefano AL, Fucci A, Frattini V, Labussiere M, Mokhtari K, Zoppoli P, Marie Y, Bruno A, Boisselier B, Giry M, Savatovsky J, Touat M, Belaid H, Kamoun A, Idbaih A, Houillier C, Luo FR, Soria JC, Tabernero J, Eoli M, Paterra R, Yip S, Petrecca K, Chan JA, Finocchiaro G, Lasorella A, Sanson M, Iavarone A. Di Stefano AL, et al. Clin Cancer Res. 2015 Jul 15;21(14):3307-17. doi: 10.1158/1078-0432.CCR-14-2199. Epub 2015 Jan 21. Clin Cancer Res. 2015. PMID: 25609060 Free PMC article. Clinical Trial.
  • The landscape of FGFR-TACC fusion in adult glioblastoma: From bench to bedside.
    Liu J, Wang Z. Liu J, et al. Mutat Res Rev Mutat Res. 2025 Jan-Jun;795:108536. doi: 10.1016/j.mrrev.2025.108536. Epub 2025 Apr 15. Mutat Res Rev Mutat Res. 2025. PMID: 40246063 Review.
  • FGFR3-TACC3 fusion in solid tumors: mini review.
    Costa R, Carneiro BA, Taxter T, Tavora FA, Kalyan A, Pai SA, Chae YK, Giles FJ. Costa R, et al. Oncotarget. 2016 Aug 23;7(34):55924-55938. doi: 10.18632/oncotarget.10482. Oncotarget. 2016. PMID: 27409839 Free PMC article. Review.

Cited by

References

    1. Claudiani S., Apperley J.F. The argument for using imatinib in CML. Hematol. Am. Soc. Hematol. Educ. Program. 2018;2018:161–167. doi: 10.1182/asheducation-2018.1.161. - DOI - PMC - PubMed
    1. Hochhaus A., Larson R.A., Guilhot F., Radich J.P., Branford S., Hughes T.P., Baccarani M., Deininger M.W., Cervantes F., Fujihara S., et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N. Engl. J. Med. 2017;376:917–927. doi: 10.1056/NEJMoa1609324. - DOI - PMC - PubMed
    1. Gristina V., La Mantia M., Iacono F., Galvano A., Russo A., Bazan V. The Emerging Therapeutic Landscape of ALK Inhibitors in Non-Small Cell Lung Cancer. Pharmaceuticals. 2020;13:474. doi: 10.3390/ph13120474. - DOI - PMC - PubMed
    1. Elsayed M., Christopoulos P. Therapeutic Sequencing in ALK+ NSCLC. Pharmaceuticals. 2021;14:80. doi: 10.3390/ph14020080. - DOI - PMC - PubMed
    1. Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J.B., Belanger K., Brandes A.A., Marosi C., Bogdahn U., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. - DOI - PubMed

MeSH terms

Substances