Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 5;14(15):3211.
doi: 10.3390/nu14153211.

Interplay between Intestinal Bacterial Communities and Unicellular Parasites in a Morbidly Obese Population: A Neglected Trinomial

Affiliations

Interplay between Intestinal Bacterial Communities and Unicellular Parasites in a Morbidly Obese Population: A Neglected Trinomial

Jana Caudet et al. Nutrients. .

Abstract

Obesity is an epidemic causing a metabolic health crisis. Herein, the interactions between the gut prokaryotic and eukaryotic communities, metabolic comorbidities and diet were studied. Stool samples from 56 subjects, 47 with type III obesity and 9 with type II obesity and cardiovascular risk or metabolic disease, were assessed for the richness, diversity and ecology of the bacterial gut community through metagenomics, together with the study of the presence of common unicellular eukaryote parasites (Blastocystis sp., Dientamoeba fragilis and Giardia intestinalis) by qPCR. Clinical information regarding metabolic comorbidities and non-alcoholic hepatic fatty liver disease was gathered. To assess the quality of the patients' diet, each participant filled in three dietary questionnaires. The most prevalent parasite Blastocystis sp. (46.4%), together with D. fragilis (8.9%), was found to be associated with higher mean diversity indexes regarding non-colonized subjects; the opposite of that which was observed in those with G. intestinalis (16.1%). In terms of phyla relative abundance, with Blastocystis sp. and D. fragilis, very slight differences were observed; on the contrary, G. intestinalis was related to an increase in Bacteroidetes and Proteobacteria, and a decrease in Firmicutes and Actinobacteria, presenting the lowest Firmicutes/Bacteroidetes ratio. At genus level, Blastocystis sp. and/or D. fragilis was accompanied with an increase in Lactobacillus spp., and a decrease in Akkermansia spp., Bifidobacterium spp. and Escherichia spp., while G. intestinalis was associated with an increase in Bacteroides spp., and a decrease in Faecalibacterium spp., Prevotella spp. and Lactobacillus spp., and the highest Bacteroides spp./Prevotella spp. ratio. Participants with non-alcoholic hepatic fatty liver presented a higher Firmicutes/Bacteroidetes ratio, and those with type 2 diabetes displayed a significantly lower Faecalibacterium spp./Escherichia spp. ratio, due to an overrepresentation of the genus Escherichia spp. The presence of parasites was associated with variations in the richness, diversity and distribution of taxa in bacterial communities, confirming a gain in diversity associated with Blastocystis sp. and providing different functioning of the microbiota with a potential positive effect on comorbidities such as type 2 diabetes, insulin resistance and metabolic syndrome. Future basic and clinical studies should assess the beneficial or pathogenic effect of these eukaryotes on obese subjects and focus on deciphering whether they may imply a healthier metabolic profile.

Keywords: Blastocystis sp.; Dientamoeba fragilis; Giardia intestinalis; diet; eukaryotic microbiota; metabolic markers; obesity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funder had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
(A) Alpha diversity distances boxplots for comparison of genus richness (Chao1) and diversity (Shannon) between subjects regarding colonization status and parasitic species. (B) Beta diversity distances boxplots for comparison of microbial community composition at genus level (Jaccard and Sorensen) between the subjects clustered by colonization status and parasitic species. Horizontal lines indicate medians. * denotes p < 0.05 compared to the non-colonized group.
Figure 2
Figure 2
Alpha diversity distances boxplots for comparison of genus richness (Chao1) and diversity (Shannon) between subjects regarding metabolic and colonization status. (A) Comparison among patients regarding the colonization with parasites and the presence of metabolic syndrome. (B) Comparison among patients regarding the colonization with parasites and the presence of Non-alcoholic hepatic fatty liver disease. Horizontal lines indicate medians.
Figure 3
Figure 3
Comparison of prevalence of metabolic comorbidities in subjected enrolled regarding colonization status by Blastocystis sp. and/or Dientamoeba fragilis.

References

    1. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053. - DOI - PMC - PubMed
    1. Cani P.D., Delzenne N.M. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 2009;15:1546–1558. doi: 10.2174/138161209788168164. - DOI - PubMed
    1. Heiss C.N., Olofsson L.E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun. 2018;10:163–171. doi: 10.1159/000481519. - DOI - PMC - PubMed
    1. Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2. doi: 10.1186/s12865-016-0187-3. - DOI - PMC - PubMed
    1. Ratajczak W., Rył A., Mizerski A., Walczakiewicz K., Sipak O., Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs) Acta Biochim. Pol. 2019;66:1–12. doi: 10.18388/abp.2018_2648. - DOI - PubMed