Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep:148:105914.
doi: 10.1016/j.compbiomed.2022.105914. Epub 2022 Aug 7.

Automated landmark identification for diagnosis of the deformity using a cascade convolutional neural network (FlatNet) on weight-bearing lateral radiographs of the foot

Affiliations

Automated landmark identification for diagnosis of the deformity using a cascade convolutional neural network (FlatNet) on weight-bearing lateral radiographs of the foot

Seung Min Ryu et al. Comput Biol Med. 2022 Sep.

Abstract

Landmark detection in flatfoot radiographs is crucial in analyzing foot deformity. Here, we evaluated the accuracy and efficiency of the automated identification of flatfoot landmarks using a newly developed cascade convolutional neural network (CNN) algorithm, Flatfoot Landmarks AnnoTating Network (FlatNet). A total of 1200 consecutive weight-bearing lateral radiographs of the foot were acquired. The first 1050 radiographs were used as the training and tuning, and the following 150 radiographs were used as the test sets, respectively. An expert orthopedic surgeon (A) manually labeled ground truths for twenty-five anatomical landmarks. Two orthopedic surgeons (A and B, each with eight years of clinical experience) and a general physician (GP) independently identified the landmarks of the test sets using the same method. After two weeks, observers B and GP independently identified the landmarks once again using the developed deep learning CNN model (DLm). The X- and Y-coordinates and the mean absolute distance were evaluated. The average differences (mm) from the ground truth were 0.60 ± 0.57, 1.37 ± 1.28, and 1.05 ± 1.23 for the X-coordinate, and 0.46 ± 0.59, 0.97 ± 0.98, and 0.73 ± 0.90 for the Y-coordinate in DLm, B, and GP, respectively. The average differences (mm) from the ground truth were 0.84 ± 0.73, 1.90 ± 1.34, and 1.42 ± 1.40 for the absolute distance in DLm, B, and GP, respectively. Under the guidance of the DLm, the overall differences (mm) from the ground truth were enhanced to 0.87 ± 1.21, 0.69 ± 0.74, and 1.24 ± 1.31 for the X-coordinate, Y-coordinate, and absolute distance, respectively, for observer B. The differences were also enhanced to 0.74 ± 0.73, 0.57 ± 0.63, and 1.04 ± 0.85 for observer GP. The newly developed FlatNet exhibited better accuracy and reliability than the observers. Furthermore, under the FlatNet guidance, the accuracy and reliability of the human observers generally improved.

Keywords: Cascade convolutional neural network; Deep learning; Diagnosis; Flatfoot; Landmark detection.

PubMed Disclaimer

Publication types

LinkOut - more resources