Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec;102(6):1238-1246.
doi: 10.1016/j.kint.2022.06.031. Epub 2022 Aug 10.

Too bright for 2 dimensions: recent progress in advanced 3-dimensional microscopy of the kidney

Affiliations
Review

Too bright for 2 dimensions: recent progress in advanced 3-dimensional microscopy of the kidney

Rui Santos et al. Kidney Int. 2022 Dec.

Abstract

The kidney is a structurally and functionally complex organ responsible for the control of water, ion, and other solute homeostasis. Moreover, the kidneys excrete metabolic waste products and produce hormones, such as renin and erythropoietin. The functional unit of the kidney is the nephron, which is composed by a serial arrangement of a filter unit called the renal corpuscle and several tubular segments that modulate the filtered fluid by reabsorption and secretion. Within each kidney, thousands of nephrons are closely intermingled and surrounded by an intricate network of blood vessels and various interstitial cell types, including fibroblasts and immune cells. This complex tissue architecture is essential for proper kidney function. In fact, kidney disease is often reflected or even caused by a derangement of the histologic structures. Frequently, kidney histology is studied using microscopic analysis of 2-dimensional tissue sections, which, however, misses important 3-dimensional spatial information. Reconstruction of serial sections tries to overcome this limitation, but is technically challenging, time-consuming, and often inherently linked to sectioning artifacts. In recent years, advances in tissue preparation (e.g., optical clearing) and new light- and electron-microscopic methods have provided novel avenues for 3-dimensional kidney imaging. Combined with novel machine-learning algorithms, these approaches offer unprecedented options for large-scale and automated analysis of kidney structure and function. This review provides a brief overview of these emerging imaging technologies and presents key examples of how these approaches are already used to study the normal and the diseased kidney.

Keywords: confocal microscopy; kidney; superresolution microscopy; volumetric microscopy.

PubMed Disclaimer

Publication types

LinkOut - more resources