Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov;86(Pt 2):146-159.
doi: 10.1016/j.semcancer.2022.08.002. Epub 2022 Aug 11.

Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer

Affiliations
Review

Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer

Xiaomeng Yin et al. Semin Cancer Biol. 2022 Nov.

Abstract

Lung cancer accounts for the main proportion of malignancy-related deaths and most patients are diagnosed at an advanced stage. Immunotherapy and targeted therapy have great advances in application in clinics to treat lung cancer patients, yet the efficacy is unstable. The response rate of these therapies varies among patients. Some biomarkers have been proposed to predict the outcomes of immunotherapy and targeted therapy, including programmed cell death-ligand 1 (PD-L1) expression and oncogene mutations. Nevertheless, the detection tests are invasive, time-consuming, and have high demands on tumor tissue. The predictive performance of conventional biomarkers is also unsatisfactory. Therefore, novel biomarkers are needed to effectively predict the outcomes of immunotherapy and targeted therapy. The application of artificial intelligence (AI) can be a possible solution, as it has several advantages. AI can help identify features that are unable to be used by humans and perform repetitive tasks. By combining AI methods with radiomics, pathology, genomics, transcriptomics, proteomics, and clinical data, the integrated model has shown predictive value in immunotherapy and targeted therapy, which significantly improves the precision treatment of lung cancer patients. Herein, we reviewed the application of AI in predicting the outcomes of immunotherapy and targeted therapy in lung cancer patients, and discussed the challenges and future directions in this field.

Keywords: Artificial intelligence; Immunotherapy; Lung cancer; Targeted therapy.

PubMed Disclaimer