Reciprocating Side-Firing Fiber for Laser Sealing of Blood Vessels
- PMID: 35965612
- PMCID: PMC9375160
- DOI: 10.1117/12.2605599
Reciprocating Side-Firing Fiber for Laser Sealing of Blood Vessels
Abstract
Infrared lasers may provide faster and more precise sealing of blood vessels and with lower jaw temperatures than ultrasonic and electrosurgical devices. This study explores an oscillating or reciprocating side-firing optical fiber method for transformation of a circular laser beam into a linear beam, necessary for integration into a standard 5-mm-diameter laparoscopic device, and for uniform irradiation perpendicular to the vessel length. A servo motor connected to a side-firing, 550-μm-core fiber, provided linear translation of a 2.0-mm-diameter circular beam over either 5 mm or 11 mm scan lengths for sealing small or large vessels, respectively. Laser seals were performed, ex vivo, on a total of 20 porcine renal arteries of 1-6 mm diameter (n = 10 samples for each scan length). Each vessel was compressed to a fixed 0.4-mm-thickness, matching the 1470-nm laser optical penetration depth. Vessels were irradiated with fluences ranging from 636 J/cm2 to 716 J/cm2. A standard burst pressure (BP) setup was used to evaluate vessel seal strength. The reciprocating fiber produced mean BP of 554 ± 142 and 524 ± 132 mmHg, respectively, and consistently sealing blood vessels, with all BP above hypertensive (180 mmHg) blood pressures. The reciprocating fiber provides a relatively uniform linear beam profile and aspect ratio, but will require integration of servo motor into a handpiece.
Keywords: blood vessel; burst pressures; coagulation; compression; laser; optical fiber; sealing.
Figures






Similar articles
-
Simultaneous sealing and bisection of porcine renal blood vessels, ex vivo, using a continuous-wave, infrared diode laser at 1470 nm.Lasers Med Sci. 2024 Jun 22;39(1):161. doi: 10.1007/s10103-024-04093-0. Lasers Med Sci. 2024. PMID: 38907065 Free PMC article.
-
Comparison of quartz and sapphire optical chambers for infrared laser sealing of vascular tissues using a reciprocating, side-firing optical fiber: Simulations and experiments.Lasers Surg Med. 2023 Dec;55(10):886-899. doi: 10.1002/lsm.23740. Epub 2023 Nov 27. Lasers Surg Med. 2023. PMID: 38009367 Free PMC article.
-
Comparison of fiber-optic linear beam shaping designs for laparoscopic laser sealing of vascular tissues.Opt Eng. 2022 Feb;61(2):026112. doi: 10.1117/1.oe.61.2.026112. Epub 2022 Feb 26. Opt Eng. 2022. PMID: 36711441 Free PMC article.
-
Optical Coherence Tomography Feedback System for Infrared Laser Sealing of Blood Vessels.Proc SPIE Int Soc Opt Eng. 2022 Jan-Feb;11948:119480R. doi: 10.1117/12.2612035. Epub 2022 Mar 7. Proc SPIE Int Soc Opt Eng. 2022. PMID: 35950053 Free PMC article.
-
[Types of medical lasers].Med Pregl. 1998 Mar-Apr;51(3-4):146-50. Med Pregl. 1998. PMID: 9611958 Review. Croatian.
Cited by
-
Simultaneous sealing and bisection of porcine renal blood vessels, ex vivo, using a continuous-wave, infrared diode laser at 1470 nm.Lasers Med Sci. 2024 Jun 22;39(1):161. doi: 10.1007/s10103-024-04093-0. Lasers Med Sci. 2024. PMID: 38907065 Free PMC article.
-
Comparison of quartz and sapphire optical chambers for infrared laser sealing of vascular tissues using a reciprocating, side-firing optical fiber: Simulations and experiments.Lasers Surg Med. 2023 Dec;55(10):886-899. doi: 10.1002/lsm.23740. Epub 2023 Nov 27. Lasers Surg Med. 2023. PMID: 38009367 Free PMC article.
-
A Real-Time Fluorescence Feedback System for Infrared Laser Sealing of Blood Vessels.IEEE J Sel Top Quantum Electron. 2023 Jul-Aug;29(4 Biophotonics):7200407. doi: 10.1109/jstqe.2022.3221338. Epub 2022 Nov 11. IEEE J Sel Top Quantum Electron. 2023. PMID: 36466144 Free PMC article.
-
Optical characteristics of laser medical instrument with side-firing fiber under complete bevel angle range.iScience. 2024 Aug 20;27(9):110769. doi: 10.1016/j.isci.2024.110769. eCollection 2024 Sep 20. iScience. 2024. PMID: 39286489 Free PMC article.
References
-
- Reccia I, Kumar J, Kusano T, Zanellato A, Draz A, Spalding D, Habib N, and Pai M, “A systematic review on radiofrequency assisted laparoscopic liver resection: Challenges and window to excel,” Surg. Oncol 26(3), 296–304 (2017). - PubMed
-
- Tanaka R, Gitelis M, Meiselman D, Abar B, Zapf M, Carbray J, Vigneswaran Y, Cheng JC, and Ujiki M, “Evaluation of vessel sealing performance among ultrasonic devices in a porcine model,” Surg. Innov 22(4), 338–343 (2015). - PubMed
-
- Manasia P, Alcaraz A, and Alcover J, “Ligasure vs. sutures in bladder replacement with Montie ileal neobladder after radical cystectomy,” Arch. Ital. Urol. Androl 75(4), 199–201 (2003). - PubMed
-
- Romano F, Gelmini R, Caprotti R, Andreotti A, Guaglio M, Franzoni C, Uggeri F, and Saviano M, “Laparoscopic splenectomy: ligasure versus EndoGIA: a comparative study,” J. Laparoendosc. Adv. Surg. Tech. A 17(6), 763–767, (2007). - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources