Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul 28:9:957932.
doi: 10.3389/fnut.2022.957932. eCollection 2022.

The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State

Affiliations
Review

The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State

Kathleen R Schell et al. Front Nutr. .

Abstract

Honey has a long history of use for the treatment of digestive ailments. Certain honey types have well-established bioactive properties including antibacterial and anti-inflammatory activities. In addition, honey contains non-digestible carbohydrates in the form of oligosaccharides, and there is increasing evidence from in vitro, animal, and pilot human studies that some kinds of honey have prebiotic activity. Prebiotics are foods or compounds, such as non-digestible carbohydrates, that are used to promote specific, favorable changes in the composition and function of the gut microbiota. The gut microbiota plays a critical role in human health and well-being, with disturbances to the balance of these organisms linked to gut inflammation and the development and progression of numerous conditions, such as colon cancer, irritable bowel syndrome, obesity, and mental health issues. Consequently, there is increasing interest in manipulating the gut microbiota to a more favorable balance as a way of improving health by dietary means. Current research suggests that certain kinds of honey can reduce the presence of infection-causing bacteria in the gut including Salmonella, Escherichia coli, and Clostridiodes difficile, while simultaneously stimulating the growth of potentially beneficial species, such as Lactobacillus and Bifidobacteria. In this paper, we review the current and growing evidence that shows the prebiotic potential of honey to promote healthy gut function, regulate the microbial communities in the gut, and reduce infection and inflammation. We outline gaps in knowledge and explore the potential of honey as a viable option to promote or re-engineer a healthy gut microbiome.

Keywords: dietary remediation; gut health; gut microbiome; honey; medicinal honey; prebiotic honey; prebiotics.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
The proposed prebiotic effects of honey. Following ingestion, the simple sugars in honey are absorbed in the small intestine. The non-digestible components, including oligosaccharides, reach the lower intestines where they are proposed to be involved in immunostimulation, modulating the microbiota, and suppressing pathogens. SCFAs, short-chain fatty acids; IL, interleukin; TNF, tumor necrosis factor; COX, cyclooxegenase. Image created with BioRender.com.

Similar articles

Cited by

References

    1. Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. (1995) 108:975–82. 10.1016/0016-5085(95)90192-2 - DOI - PubMed
    1. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. (2005) 307:1915–20. 10.1126/science.1104816 - DOI - PubMed
    1. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. (2005) 102:11070–5. 10.1073/pnas.0504978102 - DOI - PMC - PubMed
    1. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. (2007) 14:169–81. 10.1093/dnares/dsm018 - DOI - PMC - PubMed
    1. Ha EM. The impact of gut microbiota in human health and diseases: implication for therapeutic potential. Biomol Ther. (2011) 19:155–73. 10.4062/biomolther.2011.19.2.155 - DOI

LinkOut - more resources