Plasticity of the mechanism subserving inspiratory load perception
- PMID: 3597264
- DOI: 10.1152/jappl.1987.62.5.1901
Plasticity of the mechanism subserving inspiratory load perception
Abstract
The objective of this study was to determine the stability of the function describing subjects' magnitude estimates of added inspiratory resistive loads following short-term exposure (STE) to a high but nonfatiguing, inspiratory load. Four inspiratory resistive loads (8.9-35.7 cmH2O X l-1 X s) were presented twice each in random order. Subjects were asked to estimate load magnitude by force of handgrip. Perceptual performance was quantified using Stevens power law, psi = k phi n, where psi is the subject's estimate, k is a constant, and phi is the peak mouth pressure developed against the load. The exponent n represents the slope of the line in the plot of log psi vs. log phi. After a 2-min period in which subjects were required to generate 80% of their maximum inspiratory pressure against a high resistance, the load estimation protocol was repeated. Estimates were significantly reduced compared to control; however, there was no significant difference in the exponent for magnitude functions between conditions. Similar results were obtained in a second parallel experiment involving magnitude estimation of weights lifted by the elbow flexors. The results suggest plasticity in the mechanism(s) subserving sensation of added loads to breathing and that such plasticity is a general feature of sensation arising from nonrespiratory muscles as well.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
- Full Text Sources
- Research Materials
 
        