Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Dec;67(12):1542-1550.
doi: 10.4187/respcare.10159. Epub 2022 Aug 16.

Adaptive Support Ventilation and Lung-Protective Ventilation in ARDS

Affiliations
Randomized Controlled Trial

Adaptive Support Ventilation and Lung-Protective Ventilation in ARDS

Elias N Baedorf Kassis et al. Respir Care. 2022 Dec.

Abstract

Background: Adaptive support ventilation (ASV) is a partially closed-loop ventilation mode that adjusts tidal volume (VT) and breathing frequency (f) to minimize mechanical work and driving pressure. ASV is routinely used but has not been widely studied in ARDS.

Methods: The study was a crossover study with randomization to intervention comparing a pressure-regulated, volume-targeted ventilation mode (adaptive pressure ventilation [APV], standard of care at Beth Israel Deaconess Medical Center) set to VT 6 mL/kg in comparison with ASV mode where VT adjustment is automated. Subjects received standard of care (APV) or ASV and then crossed over to the alternate mode, maintaining consistent minute ventilation with 1-2 h in each mode. The primary outcome was VT corrected for ideal body weight (IBW) before and after crossover. Secondary outcomes included driving pressure, mechanics, gas exchange, mechanical power, and other parameters measured after crossover and longitudinally.

Results: Twenty subjects with ARDS were consented, with 17 randomized and completing the study (median PaO2 /FIO2 146.6 [128.3-204.8] mm Hg) and were mostly passive without spontaneous breathing. ASV mode produced marginally larger VT corrected for IBW (6.3 [5.9-7.0] mL/kg IBW vs 6.04 [6.0-6.1] mL/kg IBW, P = .035). Frequency was lower with patients in ASV mode (25 [22-26] breaths/min vs 27 [22-30)] breaths/min, P = .01). In ASV, lower respiratory-system compliance correlated with smaller delivered VT/IBW (R2 = 0.4936, P = .002). Plateau (24.7 [22.6-27.6] cm H2O vs 25.3 [23.5-26.8] cm H2O, P = .14) and driving pressures (12.8 [9.0-15.8] cm H2O vs 11.7 [10.7-15.1] cm H2O, P = .29) were comparable between conventional ventilation and ASV. No adverse events were noted in either ASV or conventional group related to mode of ventilation.

Conclusions: ASV targeted similar settings as standard of care consistent with lung-protective ventilation strategies in mostly passive subjects with ARDS. ASV delivered VT based upon respiratory mechanics, with lower VT and mechanical power in subjects with stiffer lungs.

Keywords: ARDS; ASV; driving pressure; esophageal balloon; lung-protective ventilation; mechanical ventilation; transpulmonary pressure.

PubMed Disclaimer

Conflict of interest statement

Drs Baedorf Kassis and Talmor disclose a relationship with Hamilton Medical. The remaining authors have disclosed no conflicts of interest.

Publication types

LinkOut - more resources