Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul 15;262(20):9529-34.

Gluconeogenesis from fructose predominates in periportal regions of the liver lobule

  • PMID: 3597422
Free article

Gluconeogenesis from fructose predominates in periportal regions of the liver lobule

I Anundi et al. J Biol Chem. .
Free article

Abstract

Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources