Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul;106(1-1):014136.
doi: 10.1103/PhysRevE.106.014136.

Fock-space approach to stochastic susceptible-infected-recovered models

Affiliations

Fock-space approach to stochastic susceptible-infected-recovered models

Danillo B de Souza et al. Phys Rev E. 2022 Jul.

Abstract

We investigate the stochastic susceptible-infected-recovered (SIR) model of infectious disease dynamics in the Fock-space approach. In contrast to conventional SIR models based on ordinary differential equations for the subpopulation sizes of S, I, and R individuals, the stochastic SIR model is driven by a master equation governing the transition probabilities among the system's states defined by SIR occupation numbers. In the Fock-space approach the master equation is recast in the form of a real-valued Schrödinger-type equation with a second quantization Hamiltonian-like operator describing the infection and recovery processes. We find exact analytic expressions for the Hamiltonian eigenvalues for any population size N. We present small- and large-N results for the average numbers of SIR individuals and basic reproduction number. For small N we also obtain the probability distributions of SIR states, epidemic sizes and durations, which cannot be found from deterministic SIR models. Our Fock-space approach to stochastic SIR models introduces a powerful set of tools to calculate central quantities of epidemic processes, especially for relatively small populations where statistical fluctuations not captured by conventional deterministic SIR models play a crucial role.

PubMed Disclaimer