Wireless Miniature Magnetic Phase-Change Soft Actuators
- PMID: 35975467
- PMCID: PMC7613683
- DOI: 10.1002/adma.202204185
Wireless Miniature Magnetic Phase-Change Soft Actuators
Abstract
Wireless miniature soft actuators are promising for various potential high-impact applications in medical, robotic grippers, and artificial muscles. However, these miniature soft actuators are currently constrained by a small output force and low work capacity. To address such challenges, a miniature magnetic phase-change soft composite actuator is reported. This soft actuator exhibits an expanding deformation and enables up to a 70 N output force and 175.2 J g-1 work capacity under remote magnetic radio frequency heating, which are 106 -107 times that of traditional magnetic soft actuators. To demonstrate its capabilities, a wireless soft robotic device is first designed that can withstand 0.24 m s-1 fluid flows in an artery phantom. By integrating it with a thermally-responsive shape-memory polymer and bistable metamaterial sleeve, a wireless reversible bistable stent is designed toward future potential angioplasty applications. Moreover, it can additionally locomote inside and jump out of granular media. At last, the phase-change actuator can realize programmable bending deformations when a specifically designed magnetization profile is encoded, enhancing its shape-programming capability. Such a miniature soft actuator provides an approach to enhance the mechanical output and versatility of magnetic soft robots and devices, extending their medical and other potential applications.
Keywords: high work capacity; magnetic soft composites; miniature wireless soft devices; phase-change materials; programmable shape deformation.
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Tasoglu S, Diller E, Guven S, Sitti M, Demirci U. Nat Commun. 2014;5:3124. - PMC - PubMed
- Sitti M. Nat Rev Mater. 2018;3:74.
- Peyer KE, Zhang L, Nelson BJ. Nanoscale. 2013;5:1259. - PubMed
- Cianchetti M, Laschi C, Menciassi A, Dario P. Nat Rev Mater. 2018;3:143.
- Yang X, Shang W, Lu H, Liu Y, Yang L, Tan R, Wu X, Shen Y. Sci Robot. 2020;5:eabc8191. - PubMed
- Wu S, Hu W, Ze Q, Sitti M, Zhao R. Multifunct Mater. 2020;3:042003. - PMC - PubMed
- Park S, Yuk H, Zhao R, Yim YS, Woldeghebriel EW, Kang J, Canales A, Fink Y, Choi GB, Zhao X, Anikeeva P. Nat Commun. 2021;12:3435. - PMC - PubMed
- Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O’Malley MK, Simaan N, Valdastri P, Yang G. Sci Robot. 2021;6:eabi8017. - PMC - PubMed
- Kim Y, Parada GA, Liu S, Zhao X. Sci Robot. 2019;4:eaax7329. - PubMed
-
- Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Nat Rev Mater. 2022;7:235. - PMC - PubMed
- Rich SI, Wood RJ, Majidi C. Nat Electron. 2018;1:102.
- El-Atab N, Mishra RB, Al-Modaf F, Joharji L, Alsharif AA, Alamoudi H, Diaz M, Qaiser N, Hussain MM. Adv Intell Syst. 2020;2:2000128
- Ng CSX, Tan MWM, Xu C, Yang Z, Lee PS, Lum GZ. Adv Mater. 2021;33:2003558 - PubMed
-
- Glick P, Suresh SA, Rufatto D, Cutkosky M, Tolley MT, Parness A. IEEE Robot Autom Lett. 2018;3:903.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
